Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T18:39:17.208Z Has data issue: false hasContentIssue false

Conditions for extreme wave runup on a vertical barrier by nonlinear dispersion

Published online by Cambridge University Press:  08 May 2014

Claudio Viotti*
Affiliation:
School of Mathematical Sciences, University College of Dublin, Ireland
Francesco Carbone
Affiliation:
School of Mathematical Sciences, University College of Dublin, Ireland
Frédéric Dias
Affiliation:
School of Mathematical Sciences, University College of Dublin, Ireland CMLA, ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

The runup of long strongly nonlinear waves impinging on a vertical wall can exceed six times the far-field amplitude of the incoming waves. This outcome stems from a precursory evolution process in which the wave height undergoes strong amplification due to the combined action of nonlinear steepening and dispersion, resulting in the formation of nonlinearly dispersive wave trains, i.e. undular bores. This part of the problem is first analysed separately, with emphasis on the wave amplitude growth rate during the development of undular bores within an evolving large-scale background. The growth of the largest wave in the group is seen to reflect the asymptotic time scaling provided by nonlinear modulation theory rather closely, even in the case of fully nonlinear evolution and moderately slow modulations. In order to address the effect of such a dynamics on the subsequent wall runup, numerical simulations of evolving long-wave groups are then carried out in a computational wave tank delimited by vertical walls. Conditions for optimal runup efficiency are sought with respect to the main physical parameters characterizing the incident waves, namely the wavelength, the length of the propagation path and the initial amplitude. Extreme runup is found to be strongly correlated to the ratio between the available propagation time and the shallow-water nonlinear time scale. The problem is studied in the twofold mathematical framework of the fully nonlinear free-surface Euler equations and the strongly nonlinear Serre–Green–Naghdi model. The performance of the reduced model in providing accurate long-time predictions can therefore be assessed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antuono, M. & Brocchini, M. 2007 The boundary value problem for the nonlinear shallow water equations. Stud. Appl. Maths 119 (1), 7393.Google Scholar
Antuono, M., Liapidevskii, V. & Brocchini, M. 2009 Dispersive nonlinear shallow water equations. Stud. Appl. Maths 122 (1), 128.Google Scholar
Barthélemy, E. 2004 Nonlinear shallow water theories for coastal waves. Surv. Geophys. 25, 315337.CrossRefGoogle Scholar
Bona, J. L., Pritchard, W. G. & Scott, L. R. 1980 Solitary-wave interaction. Phys. Fluids 23, 438441.Google Scholar
Byatt-Smith, J. G. B. 1988 The reflection of a solitary wave by a vertical wall. J. Fluid Mech. 197, 503521.Google Scholar
Camfield, F. E. & Street, R. L. 1968 Paper 6380. J. Waterways Harbors Div. ASCE 95, WW1, 1.Google Scholar
Carbone, F., Dutykh, D., Dudley, J. M. & Dias, F. 2013 Extreme wave run-up on a vertical cliff. Geophys. Res. Lett. 40, 31383143.Google Scholar
Chambarel, J., Kharif, C. & Touboul, J. 2009 Head-on collision of two solitary waves and residual falling jet formation. Nonlinear Process. Geophys. 16, 111122.CrossRefGoogle Scholar
Chan, R. K. C. & Street, R. L. 1970 A computer study of finite-amplitude water waves. J. Comput. Phys. 6, 6894.Google Scholar
Choi, W. & Camassa, R. 1999 Exact evolution equations for surface waves. J. Engng Mech. 125 (7), 756760.Google Scholar
Cienfuegos, R., Barthélemy, E. & Bonneton, P. 2007 A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: boundary conditions and validation. Intl J. Numer. Meth. Fluids 53, 14231455.Google Scholar
Cienfuegos, R., Barthélemy, E. & Bonneton, P. 2010 Wave-breaking model for Boussinesq-type equations including roller effects in the mass conservation equation. ASCE J. Waterway Port Coastal Ocean Engng 136, 1026.Google Scholar
Cooker, M. J., Weidman, P. D. & Bale, D. S. 1997 Refection of a high-amplitude solitary wave at a vertical wall. J. Fluid Mech. 342, 141158.Google Scholar
Craig, W., Guyenne, P., Hammack, J., Henderson, D. & Sulem, C. 2006 Solitary water wave interactions. Phys. Fluids 18 (5), 057106.CrossRefGoogle Scholar
Dias, F. & Milewski, P. 2010 On the fully-nonlinear shallow-water generalized Serre equations. Phys. Lett. A 374 (8), 10491053.Google Scholar
Dutykh, D., Clamond, D., Milewski, P. & Mitsotakis, D. 2013 Finite volume and pseudo-spectral scheme for the fully nonlinear 1D Serre equations. Eur. J. Appl. Maths 24, 761787.Google Scholar
El, G. A., Grimshaw, R. H. J. & Smyth, N. F. 2006 Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 027104.Google Scholar
Fenton, J. D. & Rienecker, M. M. 1982 A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions. J. Fluid Mech. 118, 411443.CrossRefGoogle Scholar
Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., Uslu, B., Kalligeris, N., Suteja, D., Kalsum, K., Titov, V., Gusman, A., Latief, H., Santoso, E., Sujoko, S., Djulkarnaen, D., Sunendar, H. & Synolakis, C. 2007 Extreme runup from the 17 July 2006 Java tsunami. Geophys. Res. Lett. 34 (12), L12602.Google Scholar
Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S. E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J. C. & Synolakis, C. E. 2011 Field survey of the 27 February 2010 Chile tsunamis. Pure Appl. Geophys. 168, 19892010.CrossRefGoogle Scholar
Fritz, H. M., Phillips, D. A., Okayasu, A., Shimozono, T., Liu, H., Mohammed, F., Skanavis, V., Synolakis, C. E. & Takahashi, T. 2012 The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys. Res. Lett. 39, L00G23.Google Scholar
Goda, Y. 2010 Random Seas and Design of Maritime Structures, Advanced Series on Ocean Engineering, vol. 33. World Scientific.CrossRefGoogle Scholar
Green, A. E., Laws, N. & Naghdi, P. M. 1974 On the theory of water waves. Proc. R. Soc. Lond. A 338, 4355.Google Scholar
Green, A. E. & Naghdi, P. M. 1976 A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237246.CrossRefGoogle Scholar
Grue, J., Pelinovsky, E. N., Fructus, D., Talipova, T. & Kharif, C. 2008 Formation of undular bores and solitary waves in the strait of Malacca caused by the 26 December Indian Ocean tsunami. J. Geophys. Res. 113, C05008.Google Scholar
Lannes, D. & Bonneton, P. 2009 Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21, 016601.Google Scholar
Li, Y. A., Hyman, J. M. & Choi, W. 2004 A numerical study of the exact evolution equations for surface waves in water of finite depth. Stud. Appl. Maths 113, 303324.Google Scholar
Madsen, A., Fuhrman, D. R. & Schäffer, H. A. 2008 On the solitary wave paradigm for tsunamis. J. Geophys. Res. 113, C12012.Google Scholar
Madsen, A. & Schäffer, H. A. 2010 Analytical solutions for tsunami runup on a plane beach, single waves, N-waves and transient waves. J. Fluid Mech. 645, 2757.Google Scholar
Maxworthy, T. 1976 Experiments on collisions between solitary waves. J. Fluid Mech. 76, 177185.Google Scholar
Mori, N., Takahashi, T., Yasuda, T. & Yanagisawa, H. 2011 Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 38, L00G14.Google Scholar
Nikolkina, I. & Didenkulova, I. 2011 Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 11, 29132924.CrossRefGoogle Scholar
O’Brien, L., Dudley, J. M. & Dias, F. 2013 Extreme wave events in Ireland: 14,680 BP–2012. Nat. Hazards Earth Syst. Sci. 13, 625648.CrossRefGoogle Scholar
Patterson, G. S. & Orszag, A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14, 25382541.Google Scholar
Pelinovsky, E., Troshina, E., Golinko, V., Osipenko, N. & Petrukhin, N. 1999 Runup of tsunamis on a vertical wall in a basin of complex topography. Phys. Chem. Earth B 24 (5), 431436.Google Scholar
Peregrine, D. H. 1966 Calculations of the development of an undual bore. J. Fluid Mech. 25, 321330.Google Scholar
Sainflou, M. 1928 Essai sur les digues maritimes verticales. Ann. Ponts Chaussées 98 (11), 548.Google Scholar
Serre, F. 1953 Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche 8, 374872.Google Scholar
Su, C. H. & Mirie, R. M. 1980 On head-on collisions between two solitary waves. J. Fluid Mech. 98, 509525.Google Scholar
Temperville, A. M. 1979 Interaction of solitary waves in shallow water theory. Arch. Mech. 31, 177184.Google Scholar
Temperville, A. M., Seabra-Santos, F. J. & Renouard, D. P. 1987 Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117134.Google Scholar
Tissier, M., Bonneton, P., Marche, F., Chazel, F. & Lannes, D. 2011 Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model. J. Coast. Res. 64, 603607.Google Scholar
Viotti, C., Dutykh, D. & Dias, F. 2014 The conformal-mapping method for surface gravity waves in the presence of variable bathymetry and mean current. IUTAM Procedia 11, 110118.CrossRefGoogle Scholar
Wei, G., Kirby, J. T., Grilli, S. T. & Subramanya, R. 1995 A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 7192.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley Intersicence.Google Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240243.CrossRefGoogle Scholar
Zhao, X., Liu, H. & Wang, B. 2013 The evolvement of tsunami waves on the continental shelves with gentle slope in the China Seas. Theor. Appl. Mech. Lett. 3, 032005.CrossRefGoogle Scholar
Zheleznyak, M. I. & Pelinovsky, E. N. 1985 Physical and mathematical models of the tsunami climbing a beach. In Tsunami Climbing A Beach (ed. Pelinovsky, E. N.), pp. 834. Applied Physics Institute Press.Google Scholar