Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T21:52:46.811Z Has data issue: false hasContentIssue false

Conditional sampling and other measurements in a plane turbulent wake

Published online by Cambridge University Press:  29 March 2006

R. M. Thomas
Affiliation:
Cavendish Laboratory, University of Cambridge Present Address: Central Electricity Research Laboratories, Leatherhead, Surrey.

Abstract

A series of hot-wire measurements has been carried out in a plane wake to investigate the structure of the turbulence boundary and the relation of its instantaneous position to the behaviour in the core of the flow. The principal measured quantities are as follows: mean velocity profile; intermittency factor; burst rate; mean of the longitudinal component of velocity conditioned upon various specified interface positions; autocorrelation of the intermittency signal; probability densities a t the half-intermittency point for the time between bursts and the duration of a burst; probability density for the longitudinal velocity component and its time derivative at various points across the wake; probability density a t the half-intermittency point for the same quantities in the turbulent and irrotational zones separately. In addition, the profile of the second moment of the probability density for the time between bursts has been obtained indirectly and part of the theory of Phillips (1955) has been shown to be applicable in the intermittent region.

The present measurements appear to indicate that the turbulence boundary in the wake resembles that in other plane flows more closely than has been supposed hitherto. The theory of normally distributed random noise was found to explain many of the observed statistical properties of the turbulence boundary.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batceielor, G. K. & Townsend, A. A. 1949 Proc. Roy. Soc. A 199, 238.
Betchov, R. & Criminale, W. O. 1964 Phys. Fluids, 7, 1920.
Bradbury, L. J. S. 1965 J. Fluid Mech. 23, 31.
Bradshaw, P. 1967 J. Fluid Mech. 27, 209.
Brtjun, H. H. 1971 J. Phys. E, Sci. Instrum. 4, 225.
Champagne, F. H., Sleicher, C. A. & Wehrmann, O. H. 1967 J. Fluid Mech. 28, 153.
Collis, D. C. & Williams, M. J. 1959 J. Fluid Mech. 6, 357.
Corrsin, S. 1963 Handbuch der Physik, vol. 8 (2), p. 524. Springer.
Corrsin, S. & Kistler, A. L. 1955 N.A.C.A. Rep. no. 1244.
Demetriades, A. 1968 J. Fluid Mech. 34, 465.
Fiedler, H. & Head, M. R. 1966 J. Fluid Mech. 25, 719.
Gartshore, I. S. 1966 J. Fluid Mech. 24, 89.
Gartshore, I. S. 1967 J. Fluid Mech. 30, 547.
Grant, H. L. 1958 J. Fluid Mech. 4, 149.
Heskestad, G. 1965 J. Appl. Mech. 32, 721.
Klebanoff, P. S. 1955 N.A.C.A. Rep. no. 1247.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283.
Mobbs, F. R. 1968 J. Fluid Mech. 33, 227.
Nee, V. W. & Kovasznay, L. S. O. 1969 Phys. Fluids, 12, 473.
Perry, A. E. & Morrison, G. L. 1971 J. Fluid Mech. 47, 765.
Phillips, O. M. 1955 Proc. Camb. Phil. SOC. 51, 220.
Rice, S. O. 1944 Bell Syst. Tech. J. 23, 282.
Rice, S. O. 1945 Bell Syst. Tech. J. 24, 46.
Sandborn, V. A. 1959 J. Fluid Mech. 6, 221.
Schapper, R.L. 1966 A.I.A.A. J. 4, 1979.
Snyder, W. H. & Margolis, D. P. 1967 Phys. Fluids, 10, 963.
Thomas, R. M. 1971 Ph.D. thesis, University of Cambridge.
Townsend, A. A. 1947 Proc. Roy. Soc. A 190, 551.
Townsend, A. A. 1948 Austr. J. Sci. Res. 1, 161.
Townsend, A. A. 1949a Proc. Roy. Soc. A 197, 124.
Townsend, A. A. 19493 Amer. J. Sci. Res. 2, 451.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University
Townsend, A. A. 1966 J. Fluid Mech. 26, 689.
Townsend, A. A. 1970 J. Fluid Mech. 41, 13.
Wygnanski, I. & Fiedler, H. 1969 J. Fluid Mech. 38, 577.
Wygnanski, I. S. & Fiedler, H. 1970 J. Fluid Mech. 41, 327.