Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T16:44:34.807Z Has data issue: false hasContentIssue false

Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin

Published online by Cambridge University Press:  08 February 2010

H. DONG
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University 801 22nd St. NW, Washington DC 20052, USA
M. BOZKURTTAS
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University 801 22nd St. NW, Washington DC 20052, USA
R. MITTAL*
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University 801 22nd St. NW, Washington DC 20052, USA
P. MADDEN
Affiliation:
The Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138, USA
G. V. LAUDER
Affiliation:
The Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138, USA
*
Present address: 126 Latrobe Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA. Email address for correspondence: [email protected]

Abstract

Numerical simulations are used to investigate the flow associated with a bluegill sunfish (Lepomis macrochirus) pectoral fin during steady forward motion. The simulations are intended to match the experiments of Lauder et al. (Bioinsp. Biomim., vol. 1, 2006, p. S25), and the results obtained from the simulations complement the experimental analysis. The focus of the current paper is on the quantitative characterization of the propulsive performance of the pectoral fin, which undergoes significant deformation during its stroke. This includes a detailed analysis of the thrust production mechanisms as well as their connection to the vortex dynamics and other flow features. The simulations indicate that the fish fin produces high propulsive performance by employing a complex fin gait driven by active and passive fin deformation. By connecting the vortex dynamics and fin kinematics with the surface distribution of the force on the fin, it is found that during abduction, the fin moves such that the tip of the fin undergoes a complex, three-dimensional flapping motion that produces a strong and long-lasting, attached tip vortex. This tip vortex is associated with most of the thrust production during the abduction phase of the stroke. During the adduction phase, the fin motion is similar to a ‘paddling’ stroke. Comparisons are made with rigid flapping foils to provide insights into the remarkable performance of the fish fin and to interpret the force production from the viewpoint of functional morphology.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: 126 Russ Center, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.

References

REFERENCES

Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Blondeaux, P., Fornarelli, F., Guglielmini, L. & Triantafyliou, M. 2005 Vortex structures generated by a finite-span oscillating foil. AIAA Paper 2005-0084.CrossRefGoogle Scholar
Bozukurttas, M., Mittal, R., Ddpmg, H., Lauder, G. V. & Madden, P. 2009 Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. J. Fluid Mech. 631, 311342.CrossRefGoogle Scholar
Buchholz, J. H. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
Dabiri, J. O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Exp. Biol. 208 (18), 35193532.CrossRefGoogle ScholarPubMed
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Drucker, E. G. & Lauder, G. V. 2000 A hydrodynamic analysis of fish swimming speed: wake structures and locomotor force in slow and fast labriform swimmer. J. Exp. Biol. 203, 23792393.CrossRefGoogle Scholar
Drucker, E. G. & Lauder, G. V. 2001 Wake dynamics and fluid forces of turning maneuvers in sunfish. J. Exp. Biol. 204, 431442.CrossRefGoogle ScholarPubMed
Drucker, E. G. & Lauder, G. V. 2002 Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integ. Comp. Biol. 42, 243257.CrossRefGoogle ScholarPubMed
Dyke, M. Van 1982 An Album of Fluid Motion. Parabolic.Google Scholar
Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Ghias, R., Mittal, R. & Dong, H. 2007 A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225.CrossRefGoogle Scholar
Hsieh, S. T. 2003 Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (basiliscus plumifrons). J. Exp. Biol. 206, 43634377.CrossRefGoogle ScholarPubMed
Kern, R. & Varju, D. 1998 Visual position stabilization in the hummingbird hawk moth, macroglossum stellatarum l. I. Behavioural analysis. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 182, 225237.CrossRefGoogle Scholar
Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27 (9), 12001205.CrossRefGoogle Scholar
Lauder, G. V. & Madden, P. 2006 Learning from fish: kinematics and experimental hydrodynamics for roboticists. Intl J. Autom. Comput. 4, 325335.CrossRefGoogle Scholar
Lauder, G. V. and Madden, P. G. A. (2007). Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp. Fluids 43, 641653.CrossRefGoogle Scholar
Lauder, G. V., Madden, P., Mittal, R., Dong, H. & Bozkurttas, M. 2006 Locomotion with flexible propulsors I: experimental analysis of pectoral fin swimming in sunfish. Bioinsp. Biomim. 1, S25S34.CrossRefGoogle ScholarPubMed
Lewin, G. C. & Haj-Hariri, H. 2003 Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J. Fluid Mech. 492, 339362.CrossRefGoogle Scholar
Lighthill, Sir J. 1975 Mathematical Biofluiddynamics. SIAM.CrossRefGoogle Scholar
Milne, L. J. & Milne, M. 1965 Stabilization of the visual field. Biol. Bull. 128, 285296.CrossRefGoogle Scholar
Mittal, R. 2004 Computational modelling in biohydrodynamics: trends, challenges, and recent advances. IEEE J. Oceanic Engng 29 (3), 595604.CrossRefGoogle Scholar
Mittal, R., Dong, H., Bozkurttas, M., Lauder, G. V. & Madden, P. 2006 Locomotion with flexible propulsors II: computational modelling of pectoral fin swimming in a sunfish. Bioinsp. Biomim. 1, 35.CrossRefGoogle Scholar
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A. & von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 48254852.CrossRefGoogle ScholarPubMed
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–61.CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge.Google Scholar
Ramamurti, R. & Sandberg, W. C. 2001 Simulation of flow about flapping airfoils using a finite element incompressible flow solver. AIAA J. 39 (2), 253352.CrossRefGoogle Scholar
Ramamurti, R., Sandberg, W. C., Lohner, R., Walker, J. A. & Westneat, M. W. 2002 Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. J. Exp. Biol. 205 (10), 29973008.CrossRefGoogle ScholarPubMed
Soria, J. & Cantwell, B. J. 1993 Identification and classification of topological structures in free shear flows. In Eddy Structure Identification in Free Turbulent Shear Flows (ed. Bonnet, J. P. & Glauser, M. N.), pp. 379390. Academic.CrossRefGoogle Scholar
Stacoff, A., Steger, J., Stussi, E. & Reinschmidt, C. 1996 Lateral stability in sideward cutting movements. Med. Sci. Sports Exerc. 28, 350358.Google ScholarPubMed
Standen, E. M. & Lauder, G. V. 2005 Dorsal and anal fin function in bluegill sunfish lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J. Exp. Biol. 208, 27532763.CrossRefGoogle ScholarPubMed
Tangorra, J. L., Lauder, G. V., Madden, P. G., Mittal, R., Bozkurttas, M. & Hunter, I. W. 2008 A biorobotic flapping fin for propulsion and maneuvering. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA.Google Scholar
Techet, A. H., Lim, K. L., Hover, F. S. & Triantafylou, M. S. 2005 Hydrodynamic performance of a biologically inspired 3D flapping foil. In Proceedings of 14th International Symposium on Unmanned Untethered Submersible Technology, Durham, New Hampshire.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1992 Optimal thrust development in oscillating foils with applications to fish propulsion. J. Fluids Struc. 7, 204224.Google Scholar
Triantafyllou, M. S., Hover, F. S. & Licht, S. 2003 The mechanics of force production in flapping foils under steady-state and transient motion conditions. Tech. Rep. MIT Department of Ocean Engineering, Testing Tank Facility Report 031903.Google Scholar
Tuncer, I. H., Walz, R. & Platzer, M. F. 1998 A computational study on the dynamic stall of a flapping airfoil. AIAA Paper 98-2519.CrossRefGoogle Scholar
Udaykumar, H. S., Mittal, R., Rampunggoon, P. & Khanna, A. 2001 A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345380.CrossRefGoogle Scholar
Walker, J. A. & Westneat, M. W. 1997 Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse, Gomphosus varius (labridae). J. Exp. Biol. 200, 15491569.CrossRefGoogle ScholarPubMed
Walker, J. A. & Westneat, M. W. 2000 Mechanical performance of aquatic rowing and flying. Proc. R. Soc. Lond. 267, 18751881.CrossRefGoogle ScholarPubMed
Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. 1999 An accurate Cartesian grid method for simulation of viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209240.CrossRefGoogle Scholar

Dong et al. supplementary movie

Movie 1. Motion of the sunfish pectoral fin during the fin-beat cycle in steady forward locomotion.

Download Dong et al. supplementary movie(Video)
Video 4.4 MB

Dong et al. supplementary movie

Movie 2. Vortex structures formed by the fin motion during the fin-beat cycle in steady forward locomotion. The vortex structures are identified by plotting the iso-surface of the magnitude of the imaginary part of the complex eigenvalue of the velocity deformation tensor.

Download Dong et al. supplementary movie(Video)
Video 2.7 MB