Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T22:05:43.280Z Has data issue: false hasContentIssue false

Compressible laminar flow in a capillary

Published online by Cambridge University Press:  26 April 2006

H. R. van den Berg
Affiliation:
Van der Waals Laboratory, University of Amsterdam, Valckenierstraat 67, 1018 XE Amsterdam, The Netherlands
C. A. ten Seldam
Affiliation:
Van der Waals Laboratory, University of Amsterdam, Valckenierstraat 67, 1018 XE Amsterdam, The Netherlands
P. S. van der Gulik
Affiliation:
Van der Waals Laboratory, University of Amsterdam, Valckenierstraat 67, 1018 XE Amsterdam, The Netherlands

Abstract

An equation based on the hydrodynamical equations of change is solved, analytically and numerically, for the calculation of the viscosity from the mass-flow rate of a steady, isothermal, compressible and laminar flow in a capillaiy. It is shown that by far the most dominant correction is that due to the compressibility of the fluid, computable from the equation of state. The combined correction for the acceleration of the fluid and the change of the velocity profile appears to be 1.5 times larger than the correction accepted to date.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, H. R. van den, Seldam, C. A. ten & Gulik, P. S. van der 1990 Physica A 167, 457.
Berg, H. R. van den, Seldam, C. A. ten & Gulik, P. S. van der 1993 Intl J. Thermophys. (in press).
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. John Wiley & Sons.
Collatz, L. 1960 The Numerical Treatment of Differential Equations. Springer.
Erk, S. 1929 Z. Techn. Phys. 10, 452.
Jacobsen, R. T., Jahangiri, M., Stewart, R. B., McCarty, R. D., Levelt Sengers, J. M. H., White, H. J., Sengers, J. V. & Olchowy, G. A. 1988 Ethylene (Ethene), International Thermodynamic Tables of the Fluid State, Vol. 10. Blackwell Scientific.
Kao, J. T. F., Ruska, W. & Kobayashi, R. 1968 Rev. Sci. Iustrum. 39, 824.
Karim, S. M. & Rosenhead, L. 1952 Rev. Mod. Phys. 24, 108.
Kestin, J., Imaishi, N., Nott, S. H., Nietuwoudt, J. C. & Sengers, J. V. 1985 Physica A 134, 38.
Kestin, J., Sokolov, M. & Wakeham, W. 1973 Appl. Sci. Res. 27, 241.
Madigosky, W. M. 1967 J. Chem. Phys. 46, 4441.
Poiseuille, J. L. 1840 C.R. Hebd. Sean. Acad. Sci. 11, 961; 1041.
Prins, H. J. 1991 The optimal model for a non-Newtonian compressible gass. Rep. Fac. of Techn. Math. & Informatics, Delft Univ. of Technol.Google Scholar
Prud'homme, R. K., Chapman, T. W. & Bowen, J. R. 1986 Appl. Sci. Res. 43, 67.