Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T17:15:50.276Z Has data issue: false hasContentIssue false

Compressibility effects on the growth and structure of homogeneous turbulent shear flow

Published online by Cambridge University Press:  26 April 2006

G. A. Blaisdell
Affiliation:
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA
N. N. Mansour
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA
W. C. Reynolds
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA Department of Mechanical Engineering, Stanford University, CA 94305, USA

Abstract

Compressibility effects within decaying isotropic turbulence and homogeneous turbulent shear flow have been studied using direct numerical simulation. The objective of this work is to increase our understanding of compressible turbulence and to aid the development of turbulence models for compressible flows. The numerical simulations of compressible isotropic turbulence show that compressibility effects are highly dependent on the initial conditions. The shear flow simulations, on the other hand, show that measures of compressibility evolve to become independent of their initial values and are parameterized by the root mean square Mach number. The growth rate of the turbulence in compressible homogeneous shear flow is reduced compared to that in the incompressible case. The reduced growth rate is the result of an increase in the dissipation rate and energy transfer to internal energy by the pressure–dilatation correlation. Examination of the structure of compressible homogeneous shear flow reveals the presence of eddy shocklets, which are important for the increased dissipation rate of compressible turbulence.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part 1. J. Comput. Phys. 1, 119143.Google Scholar
Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice–Hall, NJ.
Bernard, P. S. & Speziale, C. G. 1990 Bounded energy states in homogeneous turbulent shear flow – an alternative view. ICASE Rep. 90–66.
Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1991a Numerical simulation of compressible homogeneous turbulence. Rep. TF-50. Department of Mechanical Engineering, Stanford University, Stanford, CA. (Referred to as BMR in the text.)
Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1991b Compressibility effects on the growth and structure of homogeneous turbulent shear flow. Proc. Eighth Symp. on Turbulent Shear Flows, Munich, Sept 9–11.
Bradshaw, P. 1977 Compressible turbulent shear layers. Ann. Rev. Fluid Mech. 9, 3354.Google Scholar
Chandrasekhar, S. 1951 The fluctuations of density in isotropic turbulence. Proc. R. Soc. Lond. A210, 1825.Google Scholar
Chen, J. H., Cantwell, B. J. & Mansour, N. N. 1990 The effect of Mach number on the stability of a plane supersonic wake. Phys. Fluids A2 (6), 9841004.Google Scholar
Chu, B.-T. & Kovasznay, L. S. G. 1958 Non-linear interaction in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.Google Scholar
Dahlburg, J. P., Dahlburg, R. B., Gardner, J. H. & Picone, J. M. 1990 Inverse cascade in two-dimensional compressible turbulence. I. Incompressible forcing at low Mach number. Phys. Fluids A 2, 14811486.Google Scholar
Dang, K. & Morchoisne, Y. F. 1987 Numerical simulation of homogeneous compressible turbulence. 2nd Intl Symp. on Transport Phenomena in Turbulent Flows, Tokyo, Oct. 25–29, 1987.
Delorme, P. 1985 Simulation numérique de turbulence homogène compressible avec ou sans cisaillement imposé. PhD Thesis, University of Poitiers. Available in English as: Numerical simulation of compressible homogeneous turbulence. European Space Agency Tech. Trans. ESA-TT-1030, 1988, and NASA Rep. N89–15365.
Erlebacher, G. 1990 Direct simulation of compressible turbulence. IMACS First Intl Conf. on Comput. Phys., University of Colorado, Boulder, CO, June 11–15, 1990.
Erlebacher, G., Hussaini, M. Y., Kreiss, H. O. & Sarkar, S. 1990 The analysis and simulation of compressible turbulence. Theoret. Comput. Fluid Dyn. 2, 7395.Google Scholar
Erlebacher, G., Hussaini, M. Y., Speziale, C. G. & Zang, T. A. 1992 Toward the large-eddy simulations of compressible turbulent flows. J. Fluid Mech. 238, 155185.Google Scholar
Favre, A. 1965a Equations des gaz turbulents compressibles. I. J. Méc. 4 (3), 361390.Google Scholar
Favre, A. 1965b Equations des gaz turbulents compressibles. II. J. Méc. 4 (4), 391421.Google Scholar
Feiereisen, W. J., Reynolds, W. C. & Ferziger, J. H. 1981 Numerical simulation of a compressible, homogeneous, turbulent shear flow. Rep. TF-13. Department of Mechanical Engineering, Stanford University, Stanford, CA.
Feiereisen, W. J., Shirani, E., Ferziger, J. H. & Reynolds, W. C. 1982 Direct simulations of homogeneous turbulent shear flows on the Illiac IV computer: applications to compressible and incompressible modelling. Turbulent Shear Flows 3, pp. 309319. Springer.
Feller, W. 1968 An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. John Wiley & Sons.
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.Google Scholar
Kadomtsev, B. B. & Petviashvili, V. I. 1973 Acoustic turbulence. Sov. Phys. Dokl. 18 (2) 115116.Google Scholar
Kida, S. & Orszag, S. A. 1990a Enstrophy budget in decaying compressible turbulence. J. Sci. Comput. 5 (1), 134.Google Scholar
Kida, S. & Orszag, S. A. 1990b Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5 (2), 85125.Google Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657682.Google Scholar
Kwak, D., Reynolds, W. C. & Ferziger, J. H. 1975 Three-dimensional, time-dependent computation of turbulent flow. Rep. TF-5. Department of Mechanical Engineering, Stanford University, Stanford, CA.
Lee, M. J. & Reynolds, W. C. 1985 Numerical experiments on the structure of homogeneous turbulence. Rep. TF-24. Department of Mechanical Engineering, Stanford University, Stanford, CA.
Lee, S., Lele, S. K. & Moin, P. 1991 Eddy-shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657664.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. 211A, 564587.Google Scholar
Lighthill, M. J. 1954 On sound generated aerodynamically. II. Turbulence as a source of sound. Proc. R. Soc. Lond. 222A, 132.Google Scholar
Lighthill, M. J. 1955 The effect of compressibility on turbulence. Gas Dynamics of Cosmic Clouds: A Symposium, Cambridge, England, 6–11 July, 1953.
Lighthill, M. J. 1956 Viscosity effects in sound waves of finite amplitude. Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies). Cambridge University Press.
Lighthill, M. J. 1962 Sound generated aerodynamically. Proc. R. Soc. Lond. A 267, 147182.Google Scholar
L’vov, V. S. & Mikhaĭlov, A. V. 1978a Sound and hydrodynamic turbulence in a compressible liquid. Sov. Phys., J. Exp. Theor. Phys. 47 (4), April 1978.Google Scholar
L’vov, V. S. & Mikhailov, A. V. 1978b Scattering and interaction of sound with sound in a turbulent medium. Sov. Phys., J. Exp. Theor. Phys. 48 (5), Nov. 1978.Google Scholar
Moiseev, S. S., Sagdeev, R. Z., Tur, A. V. & Yanovskii, V. V. 1977 Structure of acoustic-vortical turbulence. Sov. Phys. Dokl. 22 (10), Oct. 1977.Google Scholar
Moiseev, S. S., Petviashvily, V. I., Toor, A. V. & Yanovsky, V. V. 1981 The influence of compressibility on the selfsimilar spectrum of subsonic turbulence. Physica 2D, 218223.Google Scholar
Monin, A. S. & Yaglom, A. M., 1971 Statistical Fluid Mechanics: Mechanics of Turbulence. The MIT Press, Cambridge, MA.
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. Mechanique de la Turbulence, CNRS, Paris, 1962.
Moyal, J. E. 1951 The spectra of turbulence in a compressible fluid; eddy turbulence and random noise. Proc. Camb. Phil. Soc. 48, 329344.Google Scholar
Norman, M. L. & Winkler, K.-H. A. 1985 Supersonic jets. Los Alamos Sci. Spring/Summer.
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.Google Scholar
Passot, T., Pouquet, A. & Woodward, P., 1988 The plausibility of Kolmogorov-type spectra in molecular clouds. Astron. Astrophys. 197, 228234.Google Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Mem. 81315.
Rogers, M. M., Moin, P. & Reynolds, W. C. 1986 The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Rep. TF-25. Department of Mechanical Engineering, Stanford University, Stanford, CA.
Rubesin, M. W. 1976 A one-equation model of turbulence of use with the compressible Navier–Stokes equations. NASA Tech. Mem. X-73, 128.
Sandham, N. D. & Reynolds, W. C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.Google Scholar
Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991a Direct simulation of compressible turbulence in a shear flow. Theoret. Comput. Fluid Dyn. 2, 291305.Google Scholar
Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991b Compressible homogeneous shear: simulation and modeling. Proc. Eighth Symp. Turbulent Shear Flows, Munich, September 9–11.
Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1992 Compressible homogeneous shear: simulation and modeling. Turbulent Shear Flows 8. Springer.
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991c The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.Google Scholar
Sarkar, S. & Lakshmanan, B. 1991 Application of a Reynolds stress turbulence model to the compressible shear layer., AIAA J. 29 (5), 743749.Google Scholar
Staroselsky, I., Yakhot, V., Kida, S. & Orszag, S. A. 1990 Long-time, large-scale properties of a randomly stirred compressible fluid. Phys. Rev. Lett. 65, 171174.Google Scholar
Tatsumi, T. & Tokunaga, H. 1974 One-dimensional shock turbulence in a compressible fluid. J. Fluid Mech. 65 (3), 581601.Google Scholar
Tavoularis, S. 1985 Asymptotic laws for transversely homogeneous turbulent shear flows. Phys. Fluids 28 (3), 9991001.Google Scholar
Tavoularis, S. & Karnik, U. 1989 Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech. 204, 457478.Google Scholar
Tokunaga, H. & Tatsumi, T. 1975 Interaction of plane nonlinear waves in a compressible fluid and two-dimensional shock turbulence. J. Phys. Soc. Japan, 38 (4), 11671179.Google Scholar
White, F. M. 1974 Viscous Fluid Flow. McGraw-Hill.
Wray, A. A. 1986 Very low storage time-advancement schemes. Internal Rep. NASA Ames Research Center, Moffet Field, CA.
Zakharov, V. E. & Sagdeev, R. Z. 1970 Spectrum of acoustic turbulence. Sov. Phys. Dokl. 15 (4), Nov. 1970.Google Scholar
Zeman, O. 1990 Dilatation dissipation: The concept and application in modeling compressible mixing layers. Phys. Fluids A 2, 178188.Google Scholar
Zeman, O. 1991 On the decay of compressible isotropic turbulence. Phys. Fluids A 3 (5), 951955.Google Scholar