Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T21:50:23.206Z Has data issue: false hasContentIssue false

Compressibility and variable inertia effects on heat transfer in turbulent impinging jets

Published online by Cambridge University Press:  28 January 2020

J. Javier Otero-Pérez*
Affiliation:
Department of Mechanical Engineering, University of Melbourne, ParkvilleVIC 3010, Australia
Richard D. Sandberg
Affiliation:
Department of Mechanical Engineering, University of Melbourne, ParkvilleVIC 3010, Australia
*
Email address for correspondence: [email protected]

Abstract

This article shows the importance of flow compressibility on the heat transfer in confined impinging jets, and how it is driven by both the Mach number and the wall heat flux. Hence, we present a collection of cases at several Mach numbers with different heat-flux values applied at the impingement wall. The wall temperature scales linearly with the imposed heat flux and the adiabatic wall temperature is found to be purely governed by the flow compression. Especially for high heat-flux values, the non-constant wall temperature induces considerable differences in the thermal conductivity of the fluid. This phenomenon has to date not been discussed and it strongly modulates the Nusselt number. In contrast, the heat transfer coefficient is independent of the varying thermal properties of the fluid and the wall heat flux. Furthermore, we introduce the impingement efficiency, which highlights the areas of the wall where the temperature is influenced by compressibility effects. This parameter shows how the contribution of the flow compression to raising the wall temperature becomes more dominant as the heat flux decreases. Thus, knowing the adiabatic wall temperature is indispensable for obtaining the correct heat transfer coefficient when low heat-flux values are used, even at low Mach numbers. Lastly, a detailed analysis of the dilatation field also shows how the compressibility effects only affect the heat transfer in the vicinity of the stagnation point. These compressibility effects decay rapidly further away from the flow impingement, and the density changes along the developing boundary layer are caused instead by variable inertia effects.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aillaud, P., Duchaine, F., Gicquel, L. Y. M. & Didorally, S. 2016 Secondary peak in the Nusselt number distribution of impinging jet flows: a phenomenological analysis. Phys. Fluids 28 (9), 095110.CrossRefGoogle Scholar
Baughn, J. W., Hechanova, A. E. & Yan, X. 1991 An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. Trans. ASME J. Heat Transfer 113 (4), 10231025.CrossRefGoogle Scholar
Bogey, C., De Cacqueray, N. & Bailly, C. 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5), 14471465.CrossRefGoogle Scholar
Carpenter, M. H., Nordström, J. & Gottlieb, D. 1999 A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148 (2), 341365.CrossRefGoogle Scholar
Cengel, Y. 2014 Heat and Mass Transfer: Fundamentals and Applications. McGraw-Hill Higher Education.Google Scholar
Dairay, T., Fortuné, V., Lamballais, E. & Brizzi, L.-E. 2014 LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Intl J. Heat Fluid Flow 50, 177187.CrossRefGoogle Scholar
Dairay, T., Fortuné, V., Lamballais, E. & Brizzi, L.-E. 2015 Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362394.CrossRefGoogle Scholar
El Hassan, M., Assoum, H. H., Sobolik, V., Vétel, J., Abed-Meraim, K., Garon, A. & Sakout, A. 2012 Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fuids 52 (6), 14751489.CrossRefGoogle Scholar
Freund, J. B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Gauntner, J. W., Hrycak, P. & Livingood, J. N. B.1970 Survey of literature of flow characteristics of a single turbulent jet, impinging on a flat surface. NASA TN D-5652.Google Scholar
Goldstein, R. J., Sobolik, K. A. & Seol, W. S. 1990 Effect of entrainment on the heat transfer to a heated circular air jet impinging on a flat surface. Trans. ASME J. Heat Transfer 112 (3), 608611.CrossRefGoogle Scholar
Grenson, P. & Deniau, H. 2017 Large-eddy simulation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number. Intl J. Heat Fluid Flow 68, 348363.CrossRefGoogle Scholar
Grenson, P., Léon, O., Reulet, P. & Aupoix, B. 2016 Investigation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number: an extensive experimental approach. Intl J. Heat Mass Transfer 102, 801815.CrossRefGoogle Scholar
Hadžiabdić, M. & Hanjalić, K. 2008 Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221260.CrossRefGoogle Scholar
Jambunathan, K., Lai, E., Moss, M. A. & Button, B. L. 1992 A review of heat transfer data for single circular jet impingement. Intl J. Heat Fluid Flow 13 (2), 106115.CrossRefGoogle Scholar
Jefferson-Loveday, R. J. & Tucker, P. G. 2011 Wall-resolved LES and zonal LES of round jet impingement heat transfer on a flat plate. Numer. Heat Transfer B 59 (3), 190208.CrossRefGoogle Scholar
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35 (3), 177219.CrossRefGoogle Scholar
Kennedy, C. A. & Gruber, A. 2008 Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227 (3), 16761700.CrossRefGoogle Scholar
Lee, J. & Lee, S.-J. 1999 Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Exp. Heat Transfer 12 (2), 137156.CrossRefGoogle Scholar
Lee, J. & Lee, S.-J. 2000 The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Intl J. Heat Mass Transfer 43 (4), 555575.CrossRefGoogle Scholar
Leggett, J., Priebe, S., Shabbir, A., Michelassi, V., Sandberg, R. & Richardson, E. 2018 Loss prediction in an axial compressor cascade at off-design incidences with free stream disturbances using large eddy simulation. J. Turbomach. 140 (7), 071005.CrossRefGoogle Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Sandberg, R. D. 2015 Compressible-flow DNS with application to airfoil noise. Flow Turbul. Combust. 95 (2-3), 211229.CrossRefGoogle Scholar
Sandberg, R. D. & Sandham, N. D. 2006 Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound. AIAA J. 44 (2), 402405.CrossRefGoogle Scholar
Uddin, N., Neumann, S. O. & Weigand, B. 2013 LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Intl J. Heat Mass Transfer 57 (1), 356368.CrossRefGoogle Scholar
Vinze, R., Chandel, S., Limaye, M. D. & Prabhu, S. V. 2016 Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets. Intl J. Therm. Sci. 99, 136151.CrossRefGoogle Scholar
Violato, D., Ianiro, A., Cardone, G. & Scarano, F. 2012 Three-dimensional vortex dynamics and convective heat transfer in circular and Chevron impinging jets. Intl J. Heat Fluid Flow 37, 2236.CrossRefGoogle Scholar
Viskanta, R. 1993 Heat transfer to impinging isothermal gas and flame jets. Exp. Therm. Fluid Sci. 6 (2), 111134.CrossRefGoogle Scholar
White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Wilke, R. & Sesterhenn, J. 2017 Statistics of fully turbulent impinging jets. J. Fluid Mech. 825, 795824.CrossRefGoogle Scholar

Otero-Pérez and Sandberg supplementary movie

Animation of a confined turbulent impinging jet flow at $Re_D=10,000$ and $Ma=0.5$. The impingement wall--heated at a constant heat-flux--is coloured with instantaneous contours of the wall shear stress (brighter colours indicate higher $\tau_w$). The confinement wall imposes an isothermal condition with the same temperature as the jet flow. The lower temperature flow from the jet and along this confinement boundary is shown with light-blue coloured temperature isovolumes. The turbulent jet is represented with isosurfaces of Q coloured by temperature.

Download Otero-Pérez and Sandberg supplementary movie(Video)
Video 177.5 MB