Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T17:15:07.104Z Has data issue: false hasContentIssue false

Coherent structures in turbulence

Published online by Cambridge University Press:  29 March 2006

P. O. A. L. Davies
Affiliation:
Institute of Sound and Vibration Research, University of Southampton, England
A. J. Yule
Affiliation:
Institute of Sound and Vibration Research, University of Southampton, England

Abstract

This account of the Colloquium on Coherent Structures in Turbulence held at Southampton from 26-29 March 1974 presents a brief summary of two invited lectures and 42 formal presentations on turbulent shear-flow structure. A number of shorter contributions and discussions are also outlined. The present position of the study of turbulent shear-flow structure is reviewed and some new experimental techniques are discussed.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Base, T. E. & Davies, P. O. A. L. 1967 Computer studies of vortex models to represent turbulent fluid flows. Aero. Res. Counc. Paper, no. 29072, N519.Google Scholar
Base, T. E. & Davies, P. O. A. L. 1974 A vortex model to relate Eulerian and Lagrangian turbulent velocity fields Can. J. Chem. Engng, 52, 1116.Google Scholar
Bearman, P. W. 1972 Some recent measurements of the flow around bluff bodies in smooth and turbulent streams. Symposium on External Flows, University of Bristol.
Bechert, D. & Michel, U. 1974 The control of a thin free shear layer with and without a semi-infinite plate with a pulsating monopole or dipole. Some new closed form solutions. Dtsche Luft- Raumfahrt Forsch. no. 74–22.Google Scholar
Bechert, D. & Michel, U. The control of a free shear layer from a semi-infinite plate by a pulsating monopole or dipole.
Becker, H. A. & Massarot, T. A. 1968 Vortex evolution in a round jet J. Fluid Mech. 31, 435448.Google Scholar
Binder, G., Curtet, R., FAVRE-MARINET, M. & Paturel, R. Flapping jets.
Binder, G. & FAVRE-MARINET, M. 1972 Unsteady jets. I.F.R.F. Aerodynamic Panel, France.Google Scholar
Binder, G. & FAVRE-MARINET, M. The structure of pulsating turbulent jets.
Birch, S. F. A vortex model for unsteady free shear flows.
Blackwelder, R. F. & Kaplan, R. E. 1971 Intermittent structures in turbulent boundary layers. AGARD Paper, CP-93, 5.Google Scholar
Brodkey, R. S. & Nychas, S. G. On energy reversal in turbulent flows.
Brodkey, R. S., Nychas, S. G., Tanake, J. L. & Wallace, J. M. 1973 Turbulent energy production dissipation and transfer Phys. Fluids, 16, 20102011.Google Scholar
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 Some properties of truncated turbulence signals in bounded shear flows J. Fluid Mech. 63, 209224.Google Scholar
Browand, F. K. & Weidman, P. D. Large-scale structure in the turbulent mixing layer.
Brown, G. & Roshko, A. 1974 The effect of density difference on the turbulent mixing layer. AGARD Paper, CP-93, 23.Google Scholar
Brown, G. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers J. Fluid Mech. 64, 775816.Google Scholar
Bruun, H. H. & Yule, A. J. Hot-wire eduction measurements in a round jet.
Chigier, N. A. Wake vortex flows.
Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finitearea vortex structures J. Fluid Mech. 61, 219243.Google Scholar
Coles, D. & Barker, S. Preliminary design of a synthetic turbulent boundary layer.
Crighton, D. G. & Gaster, M. Mathematical modelling of orderly jet structure.
Crow, S. & Champagne, F. H. 1971 Orderly structure in jet turbulence J. Fluid Mech. 48, 547691.Google Scholar
Davies, P. O. A. L. 1973 Structure of turbulence J. Sound Vib. 28, 513526.Google Scholar
Davies, P. O. A. L. & Edwards, A. J. V. Vortex model of a round jet.
Davies, P. O. A. L. & Hardin, J. C. 1974 Potential flow modelling of unsteady flow. Int. Conf. on Numerical Methods in Fluid Dyn., Southampton (ed. Brebbia & Connor), pp. 4264. London: Pentech Press.
Davies, P. O. A. L. & Mercer, C. A. 1973 Phase velocity measurements using the cross power spectrum. Proc. Int. Symp. on Measurement & Process Identification by Correlation and Spectral Techniques in Measurement (Bradford), pp. 2736. Inst. Measurement [map ] Control.
Deardorff, J. W. Numerically calculated structure of three-dimensional eddies in the planetary boundary layer.
Falco, R. E. 1973 Some comments on turbulent boundary layer structure. 12th Aerospace Sci. Meeting, A.I.A.A. Paper, no. 74–99.Google Scholar
FFOWCS WILLIAMS, J. E. Large-scale eddying motions responsible for particularly intense transients in the jet noise field.
Fielder, M. E. & Korschelt, D. Some observations of coherent features in a twodimensional shear layer.
Fuchs, H. V. 1972 Space correlations of the fluctuating pressure in subsonic turbulent jets J. Sound Vib. 23, 7799.Google Scholar
Fuchs, H. V. 1973 Resolution of turbulent jet pressure into azimuthal components. AGARD Paper, CP-131, 27.Google Scholar
Fuchs, H. V. Analysis of circumferentially coherent pressure fluctuations relevant to jet noise.
Fulachier, L., Dumas, R., Kovasznay, L. S. G. & Favre, A. Boundary-layer structure: three-point space-time correlations.
Girard, J.-P. & Curtet, R. M. Time evolution of coherent structures in a pulsating jet.
Goldschmidt, V. W. Comparison of heat and momentum transport in a plane jet.
Grant, A. J. The time-dependent structure of turbulent jet flows.
Grant, H. L. 1958 The large eddies of turbulent motion J. Fluid Mech. 4, 149190.Google Scholar
Gyr, A. A statistical approach to interaction phenomena of particles with the structure in turbulent flows.
Hama, F. R. 1963 Progressive deformation of a perturbed line vortex filament Phys. Fluids, 6, 526534.Google Scholar
Heibel, J. & Brodkey, R. S. Digital analysis of optically obtained instantaneous wall pressure data.
Hunt, J. C. R. 1973 A theory of turbulent flow round two-dimensional bluff bodies J. Fluid Mech. 61, 625706.Google Scholar
Hunt, J. C. R. The effects of boundary conditions on the calculations of turbulent velocities.
Johnston, J. P. Observations on the structure of turbulent shear flows in slowly rotating systems.
Johnston, J. P., Halleen, R. M. & Lezius, D. K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow J. Fluid Mech. 56, 533557.Google Scholar
Kambe, T. & Takeo, T. 1971 Motion of distorted vortex rings J. Phys. Soc. Japan, 31, 591599.Google Scholar
Kambe, T., Takao, T., Oshima, Y. & Asaka, S. Generation, development and interaction of viscous vortex rings.
Kreplin, H.-P., Eckelmann, H. & Wallace, J. M. Propagation of perturbations in the viscous sublayer.
Lau, J. C. 1971 The coherent structure of jets. Ph.D. thesis, University of Southampton.
Laufer, J., Kaplan, R. E. & Chu, W. T. 1973 On the generation of jet noise. AGARD Paper, CP-131, 21.Google Scholar
Leonard, A. Numerical simulation of interacting, coherent flow structures with three-dimensional vortex filaments.
Lessen, M. On the stability of rotationally symmetric, axial and swirling flow shear layers.
Lessen, M. & Singh, P. J. 1973 The stability of axisymmetric free shear layers J. Fluid Mech. 60, 433457.Google Scholar
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory J. Fluid Mech. 63, 753763.Google Scholar
Lilley, G. M. A mathematical model of the large-scale structure of turbulent shear flows.
Liu, J. T. C. 1974 Developing large-scale wavelike eddies and the near jet noise field J. Fluid Mech. 62, 437464.Google Scholar
Liu, J. T. C. A nonlinear instability description of coherent structures in free turbulent shear flows.
Livesey, J. L. & Edwards, F. J. Some studies of the turbulence structure in fully developed two-dimensional channel flow.
Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. Proc. Int. Colloq. on Fine-Scale Structure of the Atmosphere and its Influence on Radio Wave Propagation (ed. Yaglom & Tatarsky), pp. 166178. Moscow: Nauka.
Mattingly, G. E. Unstable disturbance characteristics in plane and axisymmetric jets.
Mattingly, G. E. & Criminale, W. O. 1971 Disturbance characteristics in a plane jet Phys. Fluids, 14, 22582264.Google Scholar
Maxworthy, T. 1974 Turbulent vortex rings J. Fluid Mech. 64, 227239.Google Scholar
Michalke, A. 1970 A note on the spatial jet instability of the compressible cylindrical vortex sheet. Dtsche Luft- Raumfahrt Forsch. DLR-FB 70–51.Google Scholar
Michalke, A. 1972 An expansion scheme for the noise from circular jets Z. Flugwiss. 20, 229237.Google Scholar
Michalke, A. On the instability of the turbulent jet boundary layer.
Morkovin, M. V. & Norman, R. S. A curious mechanism of transition to turbulence downstream of an isolated three-dimensional roughness.
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 A visual study of turbulent shear flow J. Fluid Mech. 61, 513540.Google Scholar
Nychas, S. G., Wallace, J. M., Dufula, D. & Eckelmann, H. Simulated probe signals of motions in the outer turbulent boundary layer region from visual data.
Offen, G. R. & Kline, S. J. 1974 Combined dye-streak and hydrogen-bubble visual observations in a turbulent boundary layer J. Fluid Mech. 62, 223240.Google Scholar
Oshima, Y. 1972 Motion of vortex rings in water J. Phys. Soc. Japan, 32, 11251131.Google Scholar
Pfizenmaier, E. On the structure of velocity and pressure fluctuations in a sound influenced free jet.
Reynolds, A. J. The apparent Prandtl number in a free shear layer.
Reynolds, W. C. Remarks on turbulence closures.
Roshko, A. 1973 Conf. Proc. Free Turbulent Shear Flows, N.A.S.A., Special Paper, no. 321, pp. 629635.
Roshko, A. Ideas about free shear flow structure from experiments on turbulent mixing layers.
Sabot, J. & COMTE-BELLOT, G. Internal intermittency in the core region of pipe flow.
Simpson, R. L. Quasi-periodic structures in a separating turbulent boundary layer.
Tani, I. & Hama, F. R. 1953 Some experiments on the effect of a single roughness element on boundary layer transition J. Aero. Sci. 20, 289290.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow J. Fluid Mech. 54, 3948.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. Pattern recognition in turbulent flows.
Wehrmann, O. Frequency and amplitude of intermittency in a free jet.
Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. Roy. Soc. A 332, 335353.Google Scholar
Wille, R. 1963 Growth of velocity fluctuations leading to turbulence in a free shear layer. AFOSR Tech. Rep., Hermann Föttinger Inst. Berlin.Google Scholar
Willmarth, W. W. Structure of individual contributions to Reynolds stress in a turbulent boundary layer.
Willmarth, W. W. & Lu, S. S. 1972 Structure of Reynolds stress near the wall J. Fluid Mech. 55, 6592.Google Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237255.Google Scholar
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug J. Fluid Mech. 59, 281335.Google Scholar
Wygnanski, I. J., Sokolov, M. & Friedman, D. 1974 On transition in a pipe — II. The equilibrium puff. Tel-Aviv University Rep. TAU/SOE-94/74.Google Scholar
Wygnanski, I. J., Sokolov, M. & Friedman, D. On transition in a pipe — the turbulent puff.
Yule, A. J., Bruun, H. H. & Baxter, D. R. J. Coherent motions in round jets.
Yule, A. J., Bruun, H. H., Baxter, D. R. J. & Davies, P. O. A. L. 1974 Structure of turbulent jets. University of Southampton, ISVR Memo. no. 506.Google Scholar