Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T23:01:03.708Z Has data issue: false hasContentIssue false

The coherent structure of the kinetic energy transfer in shear turbulence

Published online by Cambridge University Press:  06 April 2020

Siwei Dong
Affiliation:
State Key Laboratory of Aerodynamics, China Aerodynamics R&D Center, 621000Mianyang, China
Yongxiang Huang
Affiliation:
State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361102Xiamen, China
Xianxu Yuan
Affiliation:
State Key Laboratory of Aerodynamics, China Aerodynamics R&D Center, 621000Mianyang, China
Adrián Lozano-Durán*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: [email protected]

Abstract

The cascade of energy in turbulent flows, i.e. the transfer of kinetic energy from large to small flow scales or vice versa (backward cascade), has been the cornerstone of most theories and models of turbulence since the 1940s. Yet, understanding the spatial organisation of kinetic energy transfer remains an outstanding challenge in fluid mechanics. Here, we unveil the three-dimensional structure of the energy cascade across the shear-dominated scales using numerical data of homogeneous shear turbulence. We show that the characteristic flow structure associated with the energy transfer is a vortex shaped as an inverted hairpin followed by an upright hairpin. The asymmetry between the forward and backward cascade arises from the opposite flow circulation within the hairpins, which triggers reversed patterns in the flow.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.Google Scholar
Aoyama, T., Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2005 Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box. J. Phys. Soc. Japan 74, 32023212.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 153.CrossRefGoogle Scholar
Ballouz, J. G. & Ouellette, N. T. 2018 Tensor geometry in the turbulent cascade. J. Fluid Mech. 835, 10481064.CrossRefGoogle Scholar
Baron, F.1982 Macro-simulation tridimensionelle d’écoulements turbulents cisaillés. PhD thesis, U. Pierre et Marie Curie.Google Scholar
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.CrossRefGoogle Scholar
Bodenschatz, E. 2015 Clouds resolved. Science 350 (6256), 4041.CrossRefGoogle ScholarPubMed
Bose, S. T. & Park, G. I. 2018 Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50 (1), 535561.CrossRefGoogle ScholarPubMed
Carbone, M. & Bragg, A. D. 2019 Is vortex stretching the main cause of the turbulent energy cascade? J. Fluid Mech. 883 (R2), 113.Google Scholar
Cardesa, J. I., Vela-Martín, A. & Jiménez, J. 2017 The turbulent cascade in five dimensions. Science 357 (6353), 782784.CrossRefGoogle ScholarPubMed
Carper, M. A. & Porté-Agel, F. 2004 The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 5 (04), 124.Google Scholar
Cerutti, S. & Meneveau, C. 1998 Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phy. Fluids 10 (4), 928937.CrossRefGoogle Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41 (1), 81139.CrossRefGoogle Scholar
Del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Domaradzki, J. A., Liu, W. & Brachet, M. E. 1993 An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids 5 (7), 17471759.CrossRefGoogle Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.CrossRefGoogle Scholar
Dubrulle, B. 2019 Beyond kolmogorov cascades. J. Fluid Mech. 867, P1.CrossRefGoogle Scholar
Falkovich, G. 2009 Symmetries of the turbulent state. J. Phys. A 42 (12), 123001.Google Scholar
Finnigan, J. J., Shaw, R. H. & Patton, E. G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387424.CrossRefGoogle Scholar
Gerz, T., Howell, J. & Mahrt, L. 1994 Vortex structures and microfronts. Phys. Fluids 6 (3), 12421251.CrossRefGoogle Scholar
Gerz, T., Schumann, U. & Elghobashi, S. E. 1989 Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563594.CrossRefGoogle Scholar
Goto, S., Saito, Y. & Kawahara, G. 2017 Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high reynolds numbers. Phys. Rev. Fluids 2, 064603.Google Scholar
Härtel, C., Kleiser, L., Unger, F. & Friedrich, R. 1994 Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids 6 (9), 31303143.CrossRefGoogle Scholar
Hof, B., De Lozar, A., Avila, M., Tu, X. & Schneider, T. M. 2010 Eliminating turbulence in spatially intermittent flows. Science 327 (5972), 14911494.CrossRefGoogle ScholarPubMed
Hong, J., Katz, J., Meneveau, C. & Schultz, M. P. 2012 Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow. J. Fluid Mech. 712, 92128.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.CrossRefGoogle Scholar
Kawata, T. & Alfredsson, P. H. 2018 Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence. Phys. Rev. Lett. 120, 244501.CrossRefGoogle ScholarPubMed
Kim, J. & Moin, P. 1986 The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162, 339363.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.Google Scholar
Kim, J., Moin, P. & Moser, R. D. 1987 Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13 (1), 8285.CrossRefGoogle Scholar
Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A. P., Avila, M. & Hof, B. 2018 Destabilizing turbulence in pipe flow. Nat. Phys. 14 (4), 386390.CrossRefGoogle Scholar
Leung, T., Swaminathan, N. & Davidson, P. A. 2012 Geometry and interaction of structures in homogeneous isotropic turbulence. J. Fluid Mech. 710, 453481.CrossRefGoogle Scholar
Lin, C. 1999 Near-grid-scale energy transfer and coherent structures in the convective planetary boundary layer. Phys. Fluids 11 (11), 34823494.CrossRefGoogle Scholar
Liu, H. & Xiao, Z. 2016 Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability. Phys. Rev. E 93 (5), 115.Google ScholarPubMed
Lozano-Durán, A., Bae, H. J. & Encinar, M. P. 2020 Causality of energy-containing eddies in wall turbulence. J. Fluid Mech. 882, A2.CrossRefGoogle Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.CrossRefGoogle Scholar
Lozano-Durán, A., Holzner, M. & Jiménez, J. 2016 Multiscale analysis of the topological invariants in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J. Fluid Mech. 803, 356394.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.CrossRefGoogle ScholarPubMed
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.CrossRefGoogle Scholar
Motoori, Y. & Goto, S. 2019 Generation mechanism of a hierarchy of vortices in a turbulent boundary layer. J. Fluid Mech. 865, 10851109.CrossRefGoogle Scholar
Natrajan, V. K. & Christensen, K. T. 2006 The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence. Phys. Fluids 18 (6), 065104.CrossRefGoogle Scholar
Obukhov, A. M. 1941 On the distribution of energy in the spectrum of turbulent flow. Bull. Acad. Sci. USSR Geog. Geophys. 5, 453466.Google Scholar
Osawa, K. & Jiménez, J. 2018 Intense structures of different momentum fluxes in turbulent channels. Phys. Rev. Fluids 3 (8), 114.Google Scholar
Piomelli, U., Cabot, W. H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3 (7), 17661771.CrossRefGoogle Scholar
Piomelli, U., Yu, Y. & Adrian, R. J. 1996 Subgrid-scale energy transfer and near-wall turbulence structure. Phys. Fluids 8 (1), 215224.CrossRefGoogle Scholar
Porté-Agel, F., Pahlow, M., Meneveau, C. & Parlange, M. B. 2001 Atmospheric stability effect on subgrid-scale physics for large-eddy simulation. Adv. Water Resour. 24, 10851102.CrossRefGoogle Scholar
Porté-Agel, F., Parlange, M. B., Meneveau, C. & Eichinger, W. E. 2002 A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci. 58 (18), 26732698.2.0.CO;2>CrossRefGoogle Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Memo 81315.Google Scholar
Schumann, U. 1985 Algorithms for direct numerical simulation of shear-periodic turbulence. In Ninth International Conference on Numerical Methods in Fluid Dynamics (ed. Soubbaramayer & Boujot, J. P.), Lecture Notes in Physics, pp. 492496. Springer.CrossRefGoogle Scholar
Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28 (3), 035101.CrossRefGoogle Scholar
Sirovich, L. & Karlsson, S. 1997 Turbulent drag reduction by passive mechanisms. Nature 388, 753755.CrossRefGoogle Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.CrossRefGoogle Scholar
Vanderwel, C. & Tavoularis, S. 2011 Coherent structures in uniformly sheared turbulent flow. J. Fluid Mech. 689, 434464.CrossRefGoogle Scholar
Veynante, D. & Vervisch, L. 2002 Turbulent combustion modeling. Prog. Energy Combust. Sci. 28 (3), 193266.CrossRefGoogle Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292E5299.CrossRefGoogle ScholarPubMed
Yang, X. I. A. & Lozano-Durán, A. 2017 A multifractal model for the momentum transfer process in wall-bounded flows. J. Fluid Mech. 824, R2.CrossRefGoogle ScholarPubMed
Young, R. M. B. & Read, P. L. 2017 Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13, 11351140.CrossRefGoogle Scholar

Dong et al. supplementary movie 1

Movie version of figure 9(a)

Download Dong et al. supplementary movie 1(Video)
Video 5.7 MB

Dong et al. supplementary movie 2

Movie version of figure 9(b).

Download Dong et al. supplementary movie 2(Video)
Video 5.5 MB

Dong et al. supplementary movie 3

Movie version of figure 6(a).

Download Dong et al. supplementary movie 3(Video)
Video 5.7 MB

Dong et al. supplementary movie 4

Movie version of figure 6(b).

Download Dong et al. supplementary movie 4(Video)
Video 5.7 MB