Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T14:16:34.536Z Has data issue: false hasContentIssue false

Clustering and turbulence modulation in particle-laden shear flows

Published online by Cambridge University Press:  09 January 2013

P. Gualtieri*
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma La Sapienza Via Eudossiana 18, 00184 Roma, Italy
F. Picano
Affiliation:
Linné Flow Center, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm, Sweden
G. Sardina
Affiliation:
Linné Flow Center, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm, Sweden UKE - Università Kore di ENNA Facoltà di Ingegneria, Architettura e Scienze Motorie, Via delle Olimpiadi, 94100 Enna, Italy
C. M. Casciola
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma La Sapienza Via Eudossiana 18, 00184 Roma, Italy
*
Email address for correspondence: [email protected]

Abstract

Turbulent fluctuations induce the common phenomenon known as clustering in the spatial arrangement of small inertial particles transported by the fluid. Particles spread non-uniformly, and form clusters where their local concentration is much higher than in nearby rarefaction regions. The underlying physics has been exhaustively analysed in the so-called one-way coupling regime, i.e. negligible back-reaction of the particles on the fluid, where the mean flow anisotropy induces preferential orientation of the clusters. Turbulent transport in suspensions with significant mass in the disperse phase, i.e. particles back-reacting in the carrier phase (the two-way coupling regime), has instead been much less investigated and is still poorly understood. The issue is discussed here by addressing direct numerical simulations of particle-laden homogeneous shear flows in the two-way coupling regime. Consistent with previous findings, we observe an overall depletion of the turbulent fluctuations for particles with response time of the order of the Kolmogorov time scale. The depletion occurs in the energy-containing range, while augmentation is observed in the small-scale range down to the dissipative scales. Increasing the mass load results in substantial broadening of the energy cospectrum, thereby extending the range of scales driven by anisotropic production mechanisms. As discussed throughout the paper, this is due to the clusters which form the spatial support of the back-reaction field and give rise to a highly anisotropic forcing, active down to the smallest scales. A certain impact on two-phase flow turbulence modelling is expected from the above conclusions, since the frequently assumed small-scale isotropy is poorly recovered when the coupling between the phases becomes significant.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A. M. & Elghobashi, S. 2000 On the mechanisms of modifying the structure of turbulent homogeneous shear flows by disperse particles. Phys. Fluids 12 (11), 29062930.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.Google Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 084502.Google Scholar
Bijlard, M. J., Oliemans, R. V. A., Portela, L. M. & Ooms, G. 2010 Direct numerical simulation analysis of local flow topology in a particle-laden turbulent channel flow. J. Fluid Mech. 653 (1), 3556.CrossRefGoogle Scholar
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.CrossRefGoogle Scholar
Bosse, T., Kleiser, L. & Meiburg, E. 2006 Small particles in homogeneous turbulence: settling velocity enhancement by two way coupling. Phys. Fluids 18, 0271021.CrossRefGoogle Scholar
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A 6 (4), 825834.Google Scholar
Burton, T. M. & Eaton, J. K. 2005 Fully resolved simulations of a particle–turbulence interaction. J. Fluid Mech. 545, 67111.CrossRefGoogle Scholar
Casciola, C. M. & De Angelis, E. 2007 Energy transfer in turbulent polymer solutions. J. Fluid Mech. 581, 419436.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95, 024503.Google Scholar
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy of small scales in high shear turbulence. Phys. Fluids 19, 101704.CrossRefGoogle Scholar
Cate, A. T., Derksen, J. J., Portela, L. M. & Van Den Akken, H. E. A. 2004 Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.Google Scholar
Crowe, C. T., Sharma, M. P. & Stock, D. E. 1977 The particle-source-in-cell (PSI-CELL) model for gas-droplet flows. J. Fluids Engng 99, 325332.Google Scholar
Derksen, J. J., Sundaresan, S. & Van Der Akker, H. E. A. 2006 Simulation of mass-loading effects in gas–solid cyclone separators. Powder Technol. 163, 5968.Google Scholar
Druzhinin, O. A. 1995 On the two-way interaction in two-dimensional particle-laden flows: the accumulation of particles and flow modification. J. Fluid Mech. 297, 4976.Google Scholar
Druzhinin, O. A. 2001 The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles. Phys. Fluids 13 (12), 37383755.Google Scholar
Druzhinin, O. A. & Elghobashi, S. 1999 On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11 (3), 602610.Google Scholar
Eaton, J. K. 2009 Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Intl J. Multiphase Flow 35 (9), 792800.Google Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Elgobashi, S. 2006 An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow, pp. 310. Springer.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. Part 1. Turbulence modification. Phys. Fluids A 5 (7), 17901801.CrossRefGoogle Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151.CrossRefGoogle ScholarPubMed
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315329.Google Scholar
Gao, H., Li, H. & Wang, L.-P. 2011 Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. doi:10.1016/j.camwa.2011.06.028.Google Scholar
Garg, R., Narayanan, C. & Subramaniam, S. 2009 A numerical convergent Lagrangian–Eulerian simulation method for dispersed two-phase flows. Intl J. Multiphase Flow 35, 376388.CrossRefGoogle Scholar
Geiss, S., Dreizler, A., Stojanovic, Z., Chrigui, M., Sadiki, A. & Janicka, J. 2004 Investigation of turbulence modification in a non-reactive two-phase flow. Exp. Fluids 36, 344354.CrossRefGoogle Scholar
Gore, R. A. & Crowe, C. T. 1989 Effect of particle size on modulating turbulent intensity. Intl J. Multiphase Flow 15 (2), 279285.Google Scholar
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346.Google Scholar
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large eddy simulation of shear turbulence. J. Fluid Mech. 592, 471494.Google Scholar
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14 (2), 583596.Google Scholar
Gualtieri, P., Picano, F. & Casciola, C. M. 2009 Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629, 2539.Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2012 Statistics of particle pair relative velocity in the homogeneous shear flow. Physica D 241 (3), 245250.CrossRefGoogle Scholar
Hetsroni, G. 1989 Particles–turbulence interaction. Intl J. Multiphase Flow 15 (5), 735746.CrossRefGoogle Scholar
Van der Hoef, M. A., Van Sint Annald, M., Deen, N. G. & Kuipers, J. A. M. 2008 Numerical simulations of dense gas–solid fluidized beds: a multiscale modelling strategy. Annu. Rev. Fluid Mech. 40, 4770.CrossRefGoogle Scholar
Hwang, W. & Eaton, J. K. 2006a Homogeneous and isotropic turbulence modulation by small heavy ($St\sim 50$) particles. J. Fluid Mech. 564, 361393.Google Scholar
Hwang, W. & Eaton, J. K. 2006b Turbulence attenuation by small particles in the absence of gravity. Intl J. Multiphase Flow 32, 13861396.Google Scholar
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, P. H. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20 (4), 045101.Google Scholar
Károlyi, G., Péntek, A., Scheuring, I., Tél, T. & Toroczkai, Z. 2002 Chaotic flow: the physics of species coexistence. Proc. Natl Acad. Sci. 97, 13661.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. SSSR 434, 301305.Google Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277 (1), 109134.CrossRefGoogle Scholar
Lewis, D. & Pedley, T. 2000 Planktonic contact rates in homogeneous isotropic turbulence: theoretical predictions and kinematic simulations. J. Theor. Biol. 205, 377408.Google Scholar
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.Google Scholar
Ljus, C., Johansson, B. & Almsedt, A. E. 2002 Turbulence modification by particles in a horizontal pipe flow. Intl J. Multiphase Flow 28, 10751090.Google Scholar
Lomholt, S. & Maxey, M. R. 2003 Force-coupling method for particulate two phase flow: Stokes flow. J. Comput. Phys. 184, 381405.Google Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length scale size. J. Fluid Mech. 650 (1), 555.CrossRefGoogle Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2011 Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length scale size? Phys. Fluids 23 (2), 025101.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Mashayek, F. 1998 Droplet–turbulence interaction in low-Mach-number homogeneous shear two-phase flow. J. Fluid Mech. 367, 163203.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 2437.Google Scholar
Pan, Y. & Banerjee, S. 2001 Numerical simulation of particle interaction with wall turbulence. Phys. Fluids 8 (10), 27332755.Google Scholar
Paris, A. D. & Eaton, J. K. 2001 Turbulence attenuation in particle-laden channel flow. Stanford PhD thesis of Paris, A.D., TSD-137, Department of Mechanical Engineering.Google Scholar
Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093305.Google Scholar
Poelma, C. & Ooms, G. 2006 Particle–turbulence interaction in homogeneous isotropic turbulent suspension. Appl. Mech. Rev. 50, 7890.Google Scholar
Poelma, C., Westerweel, J. & Ooms, G. 2007 Particle–fluid interaction in grid-generated turbulence. J. Fluid Mech. 589, 315351.Google Scholar
Poesio, P., Ooms, G., Cate, A. T. & Hunt, J. C. R. 2006 Interaction and collisions between particles in a linear shear flow near a wall at low Reynolds number. J. Fluid Mech. 555, 113130.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Portela, L. M., Cota, P. & Oliemans, R. V. A. 2002 Numerical study of the near-wall behaviour of particles in turbulent pipe flow. Powder Technol. 125, 149157.Google Scholar
Post, S. L. & Abraham, J. 2002 Modelling the outcome of drop–drop collisions in diesel sprays. Intl J. Multiphase Flows 28 (6), 9971019.Google Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flow. Phys. Fluids 8 (11), 31123127.Google Scholar
Pumir, A. & Shraiman, B. 1994 Persistent small scale anisotropy in homogeneous shear flow. Phys. Rev. Lett. 75 (11), 31143117.Google Scholar
Rani, S. L., Winkler, C. M. & Vanka, S. P. 2004 Numerical simulations of turbulence modulation by dense particles in a fully developed pipe flow. Powder Technol. 141, 8099.Google Scholar
Reade, W. C. & Collins, L. R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12, 2530.Google Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14 (6), 729739.CrossRefGoogle Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315.Google Scholar
Rouson, D. W. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149.Google Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268 (333–372).Google Scholar
Shotorban, B. & Balachandar, S. 2006 Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105.Google Scholar
Shumacher, J. 2004 Relation between shear parameter and Reynolds number in statistically stationary turbulent shear flows. Phys. Fluids 16 (8), 30943102.Google Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.Google Scholar
Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2 (7), 11911203.Google Scholar
Stresing, R., Peinke, J., Seoud, R. E. & Vassilicos, J. C. 2010 Defining a new class of turbulent flows. Phys. Rev. Lett. 104 (19), 194501.Google Scholar
Sundaram, S. & Collins, L. 1996 Numerical considerations in simulating a turbulent suspension of finite-volume particles. J. Comput. Phys. 124, 337350.Google Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.Google Scholar
Sundaram, S. & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.Google Scholar
Tanaka, T. & Eaton, J. K. 2008 Classification of turbulence modulation by disperse spheres using a novel dimensionless number. Phys. Rev. Lett. 101, 114502.CrossRefGoogle Scholar
Tanaka, T. & Eaton, J. K. 2010 Sub-Kolmogorov resolution particle image velocimetry measurements of particle-laden forced turbulence. J. Fluid Mech. 643, 177206.Google Scholar
Wang, L. P., Ayala, O., Rosa, B. & Grabowski, W. W. 2008 Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys. 10, 140.Google Scholar
Wang, L. P., Rosa, B., Gao, H., He, G. & Jin, G. 2009 Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Intl J. Multiphase Flow 35 (9), 854867.Google Scholar
Woods, W. A. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391412.CrossRefGoogle Scholar
Yang, T. S. & Shy, S. S. 2005 Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modulation measurements. J. Fluid Mech. 526, 171216.Google Scholar
Yeo, K., Dong, S., Climent, E. & Maxey, M. R. 2010 Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Intl J. Multiphase Flow 36 (3), 221233.Google Scholar
Yoshimoto, H. & Goto, S. 2007 Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech. 577, 275286.Google Scholar
Zhang, Z. & Prosperetti, A. 2005 A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210, 292324.CrossRefGoogle Scholar
Zhao, L. H., Andersson, H. I. & Gillisen, J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22, 0817021.Google Scholar