No CrossRef data available.
Article contents
Closed-loop supersonic flow control with a high-speed experimental deep reinforcement learning framework
Published online by Cambridge University Press: 11 April 2025
Abstract
Although active flow control based on deep reinforcement learning (DRL) has been demonstrated extensively in numerical environments, practical implementation of real-time DRL control in experiments remains challenging, largely because of the critical time requirement imposed on data acquisition and neural-network computation. In this study, a high-speed field-programmable gate array (FPGA) -based experimental DRL (FeDRL) control framework is developed, capable of achieving a control frequency of 1–10 kHz, two orders higher than that of the existing CPU-based framework (10 Hz). The feasibility of the FeDRL framework is tested in a rather challenging case of supersonic backward-facing step flow at Mach 2, with an array of plasma synthetic jets and a hot-wire acting as the actuator and sensor, respectively. The closed-loop control law is represented by a radial basis function network and optimised by a classical value-based algorithm (i.e. deep Q-network). Results show that, with only ten seconds of training, the agent is able to find a satisfying control law that increases the mixing in the shear layer by 21.2 %. Such a high training efficiency has never been reported in previous experiments (typical time cost: hours).
JFM classification
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press