Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T04:47:42.424Z Has data issue: false hasContentIssue false

Characteristics of bolus formation and propagation from breaking internal waves on shelf slopes

Published online by Cambridge University Press:  19 February 2016

Christine D. Moore
Affiliation:
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
Jeffrey R. Koseff*
Affiliation:
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
Erin L. Hult
Affiliation:
Residential Buildings Systems Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]

Abstract

A series of laboratory experiments was conducted to study the formation of internal boluses through the run up of periodic internal wave trains on a uniform slope/shelf topography in a two-layer stratified fluid system. In the experiments, the forcing parameters of the incident waves (wave amplitude and frequency) are varied for constant slope angle and layer depths. Simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) measurements are used to calculate high resolution, two-dimensional velocity and density fields. Over the range of wave forcing conditions, four bolus formation types were observed: backward overturning into a coherent bolus, top breaking into a turbulent bolus, top breaking into a turbulent surge and forward breaking into a turbulent surge. Wave forcing parameters, including a wave Froude number $Fr$, a wave Reynolds number $Re$ and a wave steepness parameter $ka_{0}$, are used to relate initial wave forcing to a dominant bolus formation mechanism. Bolus characteristics, including the bolus propagation speed and turbulent components, are also related to wave forcing. Results indicate that for $Fr>0.20$ and $ka_{0}>0.40$, the generated boluses become more turbulent in nature. As wave forcing continues to increase further, boluses are no longer able to form.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghsaee, P., Boegman, L. & Lamb, K. G. 2010 Breaking of shoaling internal solitary waves. J. Fluid Mech. 659, 289317.Google Scholar
Arthur, R. S. & Fringer, O. B. 2014 The breaking of internal solitary waves on slopes. J. Fluid Mech. 761, 360398.Google Scholar
Benjamin, T. B. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 209248.Google Scholar
Boegman, L. & Ivey, G. N. 2009 Flow separation and resuspension beneath shoaling nonlinear internal waves. J. Geophys. Res. 114, C02018.Google Scholar
Boegman, L., Ivey, G. N. & Imberger, J. 2005 The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50, 16201637.Google Scholar
Bourgault, D., Blokhina, M. D., Mirshak, R. & Kelley, D. E. 2007 Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett. 34, L03601.CrossRefGoogle Scholar
Bourgault, D., Kelley, D. E. & Galbraith, P. S. 2008 Turbulence and boluses on an internal beach. J. Marine Res. 66, 563588.CrossRefGoogle Scholar
Britter, R. E. & Simpson, J. E. 1978 Experiments on the dynamics of a gravity current head. J. Fluid Mech. 88, 223240.Google Scholar
Cacchione, D. & Wunsch, C. 1974 Experimental study of internal waves over a slope. J. Fluid Mech. 66, 223239.CrossRefGoogle Scholar
Colosi, J. A., Beardsley, R. C., Lynch, J. F., Gawarkiewicz, G., Chiu, C. S. & Scotti, A. 2001 Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study. J. Geophys. Res. 106, 95879601.Google Scholar
Crimaldi, J. P. & Koseff, J. R. 2001 High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exp. Fluids 31, 90102.Google Scholar
De Silva, I. P. D., Imberger, J. & Ivey, G. N. 1997 Localized mixing due to a breaking internal wave ray at a sloping bed. J. Fluid Mech. 350, 127.Google Scholar
Goreau, T. J., McClanahan, T., Hayes, R. L. & Strong, A. E. 2000 Conservation of coral reefs after the 1998 global bleaching event. Conservation Biol. 14, 515.CrossRefGoogle Scholar
Helfrich, K. R. 1992 Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 243, 133154.Google Scholar
Holloway, P. E. 1991 On the dissipation of internal tides. In Tidal Hydrodynamics (ed. Parker, B. B.), pp. 449468. Wiley.Google Scholar
Hosegood, P., Bonnin, J. & van Haren, H. 2004 Solibore induced sediment resuspension in the Faeroe–Shetland channel. Geophys. Res. Lett. 31, L09301.Google Scholar
Hult, E. L., Troy, C. D. & Koseff, J. R. 2009 The breaking of interfacial waves at a submerged bathymetric ridge. J. Fluid Mech. 637, 4571.Google Scholar
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011 The mixing efficiency of interfacial waves breaking at a ridge: 2. Local mixing processes. J. Geophys. Res. 116, C02004.Google Scholar
Ivey, G. N. & Nokes, R. I. 1989 Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J. Fluid Mech. 204, 479500.Google Scholar
Ivey, G. N., Winters, K. B. & DeSilva, I. P. D. 2000 Turbulent mixing in a sloping benthic boundary layer energized by internal waves. J. Fluid Mech. 418, 5976.Google Scholar
Kao, T. W., Pan, F. S. & Renouard, D. 1985 Internal solitons on the pycnocline: generation, propagation, and shoaling and breaking over a slope. J. Fluid Mech. 169, 1953.Google Scholar
Klymak, J. M. & Moum, J. N. 2003 Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett. 30 (20), 2045.CrossRefGoogle Scholar
Lamb, K. G. 2001 A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech. 451, 109144.Google Scholar
Lamb, K. G. 2003 Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech. 478, 81100.Google Scholar
Leichter, J. J., Deane, G. B. & Stokes, M. D. 2005 Spatial and temporal variability of internal wave forcing on a coral reef. J. Phys. Oceanogr. 35, 19451962.Google Scholar
Leichter, J. J., Wing, S. R., Miller, S. L. & Denny, M. W. 1996 Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41, 14901501.Google Scholar
Lim, K., Ivey, G. N. & Jones, N. L. 2010 Experiments on the generation of internal waves over continental shelf topography. J. Fluid Mech. 663, 385400.Google Scholar
Lim, K., Ivey, G. N. & Nokes, R. I. 2008 The generation of internal waves by tidal flow over continental shelf/slope topography. Environ. Fluid Mech. 8, 511526.CrossRefGoogle Scholar
Michallet, H. & Ivey, G. N. 1999 Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res. 104, 1346713477.Google Scholar
Morozov, E. G., Trulsen, K., Velarde, M. G. & Vlasenko, V. I. 2002 Internal tides in the Strait of Gibraltar. J. Phys. Oceanogr. 32, 31933206.Google Scholar
Nagashima, H. 1971 Reflection and breaking of internal waves on a sloping beach. J. Oceanogr. Soc. Japan. 27, 16.Google Scholar
Nakayama, K. & Imberger, J. 2010 Residual circulation due to internal waves shoaling on a slope. Limnol. Oceanogr. 55, 10091023.Google Scholar
Pineda, J. 1994 Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52, 427458.Google Scholar
Pritchard, M. & Weller, R. A. 2005 Observations of internal bores and waves of elevation on the New England inner continental shelf during summer 2001. J. Geophys. Res. 110, C03020.Google Scholar
Rehmann, C. R.1995 Effects of stratification and molecular diffusivity on the mixing efficiency of decaying grid turbulence. PhD thesis, Stanford University.Google Scholar
Reigl, B. & Piller, W. E. 2003 Possible refugia for reefs in times of environmental stress. Intl J. Earth Sci. 92, 520531.Google Scholar
Saffarinia, K. & Kao, T. W. 1996 Numerical study of the breaking of an internal soliton and its interaction with a slope. Dyn. Atmos. Oceans 23, 379391.Google Scholar
Scotti, A. & Pineda, J. 2004 Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophys. Res. Lett. 31, L22307.Google Scholar
Sharples, J., Moore, C. M. & Abraham, E. R. 2001 Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. J. Geophys. Res. 106, 1406914081.Google Scholar
Shavit, U., Lowe, R. L. & Steinbuck, J. V. 2007 Intensity capping: a simple method to improve cross-correlation PIV results. Exp. Fluids 42, 225240.Google Scholar
Simpson, J. E. 1972 Effects of the lower boundary on the head of a gravity current. J. Fluid Mech. 53, 759768.Google Scholar
Sveen, J. K.2004 An introduction to MatPIV v.1.6.1. Department of Mathematics, University of Oslo. http://folk.uio.no/jks/matpiv/.Google Scholar
Taylor, J. R. 1993 Turbulence and mixing in the boundary layer generated by shoaling internal waves. Dyn. Atmos. Oceans 19, 233258.Google Scholar
Thorpe, S. A. 1987 On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech. 178, 279302.Google Scholar
Troy, C. D. & Koseff, J. R. 2005a The generation and quantitative visualization of breaking internal waves. Exp. Fluids 38, 549562.Google Scholar
Troy, C. D. & Koseff, J. R. 2005b The instability and breaking of long internal waves. J. Fluid Mech. 543, 107136.Google Scholar
Umeyama, M. 2008 Mechanics of internal waves propagating over a varying bottom slope. J. Water Res. Environ. Engng 23, 111.Google Scholar
Umeyama, M. & Shintani, T. 2006 Transformation, attenuation, setup, and undertow of internal waves on a gentle slope. J. Waterway Port Coast. Ocean Engng 132, 477486.Google Scholar
Variano, E. A. & Cowen, E. A. 2007 Quantitative imaging of CO2 transfer at an unsheared free surface. In Transport at the Air-Sea Interface (ed. Garbe, C. S., Handler, R. A. & Jähne, B.), pp. 4357. Springer.Google Scholar
Venayagamoorthy, S. K. & Fringer, O. B. 2007 On the formulation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech. 577, 137159.Google Scholar
Vlasenko, V. & Hutter, K. 2002 Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32, 17791793.Google Scholar
Wallace, B. C. & Wilkinson, D. I. 1988 Run-up of internal waves on a gentle slope in a two-layered system. J. Fluid Mech. 191, 419442.Google Scholar
Walter, R. K., Squibb, M. E., Woodson, C. B., Koseff, J. R. & Monismith, S. G. 2014 Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J. Geophys. Res. Oceans 119, 87098730.Google Scholar
Walter, R. K., Woodson, C. B., Arthur, R. S., Fringer, O. B. & Monismith, S. G. 2012 Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. 117, C07017.Google Scholar
West, J. M. & Salm, R. V. 2003 Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv. Biol. 17, 956967.Google Scholar