Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T10:22:53.675Z Has data issue: false hasContentIssue false

Centrifugal instability in non-axisymmetric vortices

Published online by Cambridge University Press:  13 March 2015

David Nagarathinam
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai - 600036, India
A. Sameen
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai - 600036, India
Manikandan Mathur*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai - 600036, India
*
Email address for correspondence: [email protected]

Abstract

We study the centrifugal instability of non-axisymmetric vortices in the presence of an axial flow ($w$) and a background rotation (${\it\Omega}_{z}$) using the local stability approach. Analytically solving the local stability equations for an axisymmetric vortex with $w$ and ${\it\Omega}_{z}$, growth rates for wave vectors that are periodic upon evolution around a closed streamline are calculated. The resulting sufficient criterion for centrifugal instability in an axisymmetric vortex is then heuristically extended to non-axisymmetric vortices and written in terms of integral quantities and their derivatives with respect to the streamfunction on a streamline. The new criterion for non-axisymmetric vortices, which converges to the exact criterion of Bayly (Phys. Fluids, vol. 31, 1988, pp. 56–64) in the absence of background rotation and axial flow, is validated by comparisons with numerically calculated growth rates for two different anticyclonic vortices: the Stuart vortex (specified by the concentration parameter ${\it\rho},~0<{\it\rho}\leqslant 1$) and the Taylor–Green vortex (specified by the aspect ratio $E,~0<E\leqslant 1$). With no axial velocity and finite background rotation, the criterion predicts a lower and an upper threshold of $|{\it\Omega}_{z}|$ between which centrifugal instability is present. We further demonstrate that the criterion represents an improvement over the criterion of Sipp & Jacquin (Phys. Fluids, vol. 12, 2000, pp. 1740–1748). Finally, in the presence of both axial velocity and background rotation, the criterion is shown to be accurate for large enough ${\it\rho}$ and $E$.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.CrossRefGoogle Scholar
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.CrossRefGoogle Scholar
Billant, P. & Gallaire, F. 2013 A unified criterion for the centrifugal instabilities of vortices and swirling jets. J. Fluid Mech. 734, 535.CrossRefGoogle Scholar
Eckhoff, K. S. 1984 A note on the instability of columnar vortices. J. Fluid Mech. 145, 417421.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J. M. 2003a Instability mechanisms in swirling flows. Phys. Fluids 15, 26222639.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J. M. 2003b Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223253.CrossRefGoogle Scholar
Godeferd, F. S., Cambon, C. & Leblanc, S. 2001 Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Stuart vortices with external rotation. J. Fluid Mech. 449, 137.CrossRefGoogle Scholar
Hopfinger, E. J. & van Heijst, G. J. F. 1993 Vortices in rotating fluids. Annu. Rev. Fluid Mech. 25, 241289.CrossRefGoogle Scholar
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Leblanc, S. & Cambon, C 1998 Effects of the Coriolis force on the stability of Stuart vortices. J. Fluid Mech. 356, 353379.CrossRefGoogle Scholar
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.CrossRefGoogle Scholar
Mathur, M., Ortiz, S., Dubos, T. & Chomaz, J. M. 2014 Effects of an axial flow on the centrifugal, elliptic and hyperbolic instabilities in Stuart vortices. J. Fluid Mech. 758, 565585.CrossRefGoogle Scholar
Mutabazi, I., Normand, C. & Wesfreid, J. E. 1992 Gap size effects on centrifugally and rotationally driven instabilities. Phys. Fluids A 4, 11991205.CrossRefGoogle Scholar
Potylitsin, P. G. & Peltier, W. R. 1999 Three-dimensional destabilization of Stuart vortices: the influence of rotation and ellipticity. J. Fluid Mech. 387, 205226.CrossRefGoogle Scholar
Potylitsin, P. G. & Peltier, W. R. 2003 On the nonlinear evolution of columnar vortices in a rotating environment. Geophys. Astrophys. Fluid Dyn. 97, 365391.CrossRefGoogle Scholar
Rayleigh, Lord 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.Google Scholar
Sipp, D. & Jacquin, L. 1998 Elliptic instability in two-dimensional flattened Taylor–Green vortices. Phys. Fluids 10, 839849.CrossRefGoogle Scholar
Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12, 17401748.CrossRefGoogle Scholar
Sipp, D., Lauga, E. & Jacquin, L. 1999 Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11, 37163728.Google Scholar
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.CrossRefGoogle Scholar
Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A 158, 499521.Google Scholar