Published online by Cambridge University Press: 28 March 2006
A mathematical model is constructed for cavitating flow past a wedge with sides of equal length but with its axis of symmetry placed at an angle to the incident stream. The model involves a subsidiary cavity with a re-entrant jet at the vertex. Only the case of zero cavitation number is considered. The flow field is worked out in some detail for small angles of incidence, and the lift, drag and moment coefficients are calculated as far as first-order terms in the angle of incidence. It is shown that the effect of the rate of loss of momentum in the re-entrant jet on these force coefficients is negligible to this order.
Experimentally, it is shown that the secondary cavity does exist under suitable conditions, and the force coefficients obtained agree with the theory.