Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T17:16:16.514Z Has data issue: false hasContentIssue false

Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model

Published online by Cambridge University Press:  23 January 2007

V. V. KHATAVKAR
Affiliation:
Materials Technology, Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
P. D. ANDERSON*
Affiliation:
Materials Technology, Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
H. E. H. MEIJER
Affiliation:
Materials Technology, Dutch Polymer Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
*
Author to whom correspondence should be addressed: [email protected]

Abstract

The spreading of a liquid droplet on a smooth solid surface in the partially wetting regime is studied using a diffuse-interface model based on the Cahn--Hilliard theory. The model is extended to include non-90 contact angles. The diffuse-interface model considers the ambient fluid displaced by the droplet while spreading as a liquid. The governing equations of the model for the axisymmetric case are solved numerically using a finite-spectral-element method. The viscosity of the ambient fluid is found to affect the time scale of spreading, but the general spreading behaviour remains unchanged. The wettability expressed in terms of the equilibrium contact angle is seen to influence the spreading kinetics from the early stages of spreading. The results show agreement with the experimental data reported in the literature.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amestoy, P. R. & Duff, I. S. 1989a Memory management issues in sparse mutlifrontal methods on multiprocessors. Intl J. Supercomput. Applics. 7, 64.CrossRefGoogle Scholar
Amestoy, P. R. & Duff, I. S. 1989b Vectorization of a multiprocessor mutlifrontal code. Intl J. Supercomput. Applics. 3, 41.CrossRefGoogle Scholar
Amestoy, P. R. & Puglisi, C. 2002 An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Applics. 24, 553.CrossRefGoogle Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
Barrat, J.-L. & Bocquet, L. 1999 Large slip effects at a nonwetting fluid–solid interface. Phys. Rev. Lett. 82, 46714674.CrossRefGoogle Scholar
Bazhlekov, I. B. 2003 Non-singular boundary-integral method for deformable drops in viscous flows. PhD thesis, Eindhoven University of Technology, the Netherlands.Google Scholar
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2004 Non-singular boundary-integral method for deformable drops in viscous flows. Phys. Fluids 16 (4), 10641081.CrossRefGoogle Scholar
Beveridge, G. S. G. & Schechter, R. S. 1970 Optimization: Theory and Practice. McGraw–Hill.Google Scholar
Blake, T. D. 1993 Dynamic Contact Angles and Wetting Kinetics, Surfactant Science Series, vol. 49. Marcel Dekker.Google Scholar
Briant, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Phys. Rev. E 69, 031603.CrossRefGoogle ScholarPubMed
Briant, A. J., Wagner, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion. I. Liquid–gas systems. Phys. Rev. E 69, 031602.CrossRefGoogle ScholarPubMed
Cahn, J. W. 1965 Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 9399.CrossRefGoogle Scholar
Cahn, J. W. 1977 Critical point wetting. J. Chem. Phys. 66, 36673672.CrossRefGoogle Scholar
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258267.CrossRefGoogle Scholar
Chella, R. & Viñals, J. 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53, 38323840.CrossRefGoogle ScholarPubMed
Chen, H.-Y., Jasnow, D. & Viñals, J. 2000 Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85, 16861689.CrossRefGoogle Scholar
Cieplak, M., Koplik, J. & Banavar, J. R. 2001 Boundary conditions at fluid–solid interface. Phys. Rev. Lett. 86, 803806.CrossRefGoogle ScholarPubMed
Davis, H. T. & Scriven, L. E. 1982 Stress and structure in fluid interfaces. Adv. Chem. Phys. 49, 357454.CrossRefGoogle Scholar
Dodge, F. T. 1988 The spreading of liquid droplets on solid surfaces. J. Colloid Interface Sci. 121, 154160.CrossRefGoogle Scholar
Durbin, P. 1988 Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop. J. Fluid Mech. 197, 157169.CrossRefGoogle Scholar
Dussan, V. E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.CrossRefGoogle Scholar
Dussan, V. E. B. & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
Foister, R. 1990 The kinetics of displacement wetting in liquid/liquid/solid systems. J. Colloid Interface Sci. 136, 266282.CrossRefGoogle Scholar
Fournier, A., Bunge, H. P., Hollerbach, R. & Villote, J. P. 2004 Application of the spectral-element method to the axisymmetric Navier–Stokes equation. Geophys. J. Intl 156, 682700.CrossRefGoogle Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827862.CrossRefGoogle Scholar
de Gennes, P. G., Hua, X. & Levinson, P. 1990 Dynamics of wetting: local contact angles. J. Fluid Mech. 212, 5563.CrossRefGoogle Scholar
Gerritsma, M. I. & Phillips, T. N. 2000 Spectral element methods for axisymmetric Stokes problem. J. Comput. Phys. 164, 81103.CrossRefGoogle Scholar
Gunton, J. D., Miguel, M. S. & Sahni, P. S. 1983 The Dynamics of First-Order Phase Transitions, Phase Transitions and Critical Phenomena, vol. 8. Academic.Google Scholar
Hocking, L. M. 1977 A moving fluid interface. Part 2. The removal of force singularity by a slip flow. J. Fluid Mech. 79, 209229.CrossRefGoogle Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85100.CrossRefGoogle Scholar
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96127.CrossRefGoogle Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.CrossRefGoogle Scholar
Jasnow, D. & Viñals, J. 1996 Coarse-grained description of thermo-capillary flow. Phys. Fluids 8 (3), 660669.CrossRefGoogle Scholar
Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of Two-Fluid Dynamics. Springer.Google Scholar
Keestra, B., van Puyvelde, P. C. J., Anderson, P. D. & Meijer, H. E. H. 2003 Diffuse interface modeling of the morphology and rheology of immiscible polymer blends. Phys. Fluids 15, 25672575.CrossRefGoogle Scholar
Kistler, S. F. 1993 Hydrodynamics of Wetting, Surfactant Science Series, vol. 49. Marcel Dekker.Google Scholar
Koplik, J., Banavar, J. R. & Willemsen, J. F. 1988 Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 12821285.CrossRefGoogle ScholarPubMed
Koplik, J., Banavar, J. R. & Willemsen, J. F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781794.CrossRefGoogle Scholar
Lee, H.-G., Lowengrub, J. S. & Goodman, J. 2002a Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2), 492513.CrossRefGoogle Scholar
Lee, H.-G., Lowengrub, J. S. & Goodman, J. 2002b Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the non-linear regime. Phys. Fluids 14 (2), 514545.CrossRefGoogle Scholar
Lowengrub, J. & Truskinovsky, L. 1998 Quasi-incompressible Cahn–Hilliard fluids. Proc. R. Soc. London A 454, 26172654.CrossRefGoogle Scholar
Marmur, A. 1983 Equilibrium and spreading of liquids on solid surfaces. Adv. Colloid Interface Sci. 19, 75102.CrossRefGoogle Scholar
Naumann, E. & He, D. 2001 Nonlinear diffusion and phase separation. Chem. Engng Sci. 56, 19992018.CrossRefGoogle Scholar
Rowlinson, J. S. & Widom, B. 1989 Molecular Theory of Capillarity. Clarendon.Google Scholar
de Ruijter, M. J., Coninck, J. D. & Oshanin, G. 1999 Droplet spreading: partial wetting regime revisited. Langmuir 15, 22092216.CrossRefGoogle Scholar
de Ruijter, M. J., Charlot, M., Voue, M. & Coninck, J. D. 2000 Experimental evidence of several time scales in droplet spreading. Langmuir 16, 23632368.CrossRefGoogle Scholar
Seaver, A. E. & Berg, J. C. 1994 Spreading of a droplet on a solid surface. J. Appl. Polymer Sci. 52, 431435.CrossRefGoogle Scholar
Segal, A. 1995 SEPRAN Manual. Leidschendam, The Netherlands.Google Scholar
Seppecher, P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34, 977992.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. 1993a A two-layer model of an interface between immiscible fluids. Physica A 192, 4762.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. 1993b The moving contact lines on a smooth solid surface. Intl J. Multiphase Flow 19, 589610.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. 1994 Mathematical modeling of wetting hydrodynamics. Fluid Dyn. Res. 13, 4564.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. 1997a Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211249.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. 1997b Spreading of drops on solid surfaces in a quasi-static regime. Phys. Fluids 9, 266275.CrossRefGoogle Scholar
Thompson, P. A. & Robbins, M. O. 1989 Simulations of contact line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766769.CrossRefGoogle ScholarPubMed
Thompson, P. A. & Robbins, M. O. 1990 Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A 41 (12), 68306837.CrossRefGoogle ScholarPubMed
Verschueren, M. 1999 A diffuse-interface model for structure development in flow. PhD thesis, Eindhoven University of Technology, the Netherlands.Google Scholar
Verschueren, M., van de Vosse, F. & Meijer, H. 2001 Diffuse-interface modelling of thermocapillary flow instabilities in a Hele-Shaw cell. J. Fluid Mech. 434, 153166.CrossRefGoogle Scholar
van der Waals, J. D. 1893 The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Verhandel. Konink. Akad. Weten. Amsterdam 1. (Engl. transl. by J. S. Rowlinson) in J. Statist. Phys. 20 (1979), 197–244.Google Scholar
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.CrossRefGoogle Scholar
Zosel, A. 1993 Studies of the wetting kinetics of liquid drops on solid surfaces. Colloid Polymer Sci. 271, 680687.CrossRefGoogle Scholar