Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T21:03:43.878Z Has data issue: false hasContentIssue false

Capillary ionic liquid electrospray: beam compositional analysis by orthogonal time-of-flight mass spectrometry

Published online by Cambridge University Press:  05 October 2021

S.W. Miller
Affiliation:
Boston College, Institute for Scientific Research, Chestnut Hill, MA 02467, USA
J.R. Ulibarri-Sanchez
Affiliation:
Universities Space Research Association, Houston, TX 77058, USA
B.D. Prince*
Affiliation:
US Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, NM 87117, USA
R.J. Bemish
Affiliation:
US Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, NM 87117, USA
*
Email address for correspondence: [email protected]

Abstract

Orthogonal time-of-flight mass spectrometry has been used to characterize the kinetic energy and charged species distributions from an in vacuo electrospray ion source for four different ionic liquids at volumetric flow rates between 0.3 and 3.3 nanolitres per second. In all cases, the mass spectra revealed charged species consisting of singly charged and multiply charged ions as well as two broad, unresolved droplet distributions occurring in the 104 to 106 atomic mass unit per charge range. The mean jet velocity and mean jet breakup potential were established from analysis of the energy profile of the high mass-to-charge droplets. At the jet breakup point, we find the energy loss and the jet diameter flow rate dependence of the electrospray beam to be similar to that determined by Gamero-Castaño (Phys. Fluids, vol. 20, 2008, 032103; Phys. Rev. Fluids, vol. 8, 2021, 013701) for 1-ethyl-3-methylimidazolium bis(trifluromethylsulfonyl)imide at similar volumetric flow rates. Similar trends are observed for all four liquids over the flow regime. A jet instability analysis revealed that jet electrification and viscous effects drive the jet breakup from the case of an uncharged, inviscid jet; jet breakup occurs at droplet and jet radius ratios that deviate from 1.89. Using the analytically determined ratio and the beam profile, different species are modelled to reconstruct the mass spectra; primary droplets constitute only a fraction of the total species present. The populations of the species are discussed.

Type
JFM Papers
Creative Commons
To the extent this is a work of the US Government, it is not subject to copyright protection within the United States. Published by Cambridge University Press.
Copyright
© Air Force Research Laboratory, Defense Advanced Research Projects Agency and The Author(s), 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Northrop Grumman Corporation, 1575 S. Price Rd, Chandler, AZ 85286, USA.

References

Berg, S.P. & Rovey, J.L. 2012 Dual-mode propellant properties and performance analysis of energetic ionic liquids. AIAA Paper 2012-0975.CrossRefGoogle Scholar
Berg, S.P. & Rovey, J.L. 2013 Assessment of imidazole-based ionic liquids as dual-mode spacecraft propellants. J. Propul. Power 29, 339351.CrossRefGoogle Scholar
Berg, S.P., Rovey, J.L., Prince, B.D., Miller, S.W. & Bemish, R.J. 2015 Electrospray of an energetic ionic liquid monopropellant for multi-mode micropropulsion applications. AIAA Paper 2015-4011.CrossRefGoogle Scholar
Chiu, Y.-H., Austin, B., Dressler, R.A., Levandier, D.J., Murray, P.T., Lozano, P. & Martinez-Sanchez, M. 2005 Mass spectrometric analysis of colloid thruster ion emission from selected propellants. J. Propul. Power 21, 416423.CrossRefGoogle Scholar
Chiu, Y. & Dressler, R.A. 2007 Ionic liquids for space propulsion. In Ionic Liquids IV: Not Just Solvents Anymore (ed. J.F. Brennecke, R.D. Rogers & K.R. Seddon), pp. 138160. American Chemical Society.CrossRefGoogle Scholar
Chiu, Y., Gaeta, G., Heine, T.R., Dressler, R.A. & Lavandier, D.J. 2006 Analysis of the electrospray plume from the EMI-Im propellant externally wetted on a tungsten needle. AIAA Paper 2006-5010.CrossRefGoogle Scholar
Chiu, Y., Gaeta, G., Levandier, D.J., Dressler, R.A. & Boatz, J.A. 2007 Vacuum electrospray ionization study of the ionic liquid, [Emim][Im]. Intl J. Mass Spectrom. 265, 146158.CrossRefGoogle Scholar
Chiu, Y., Levandier, D., Austin, B., Dressler Rainer, A., Murray, P.T., Lozano, P. & Martinez-Sanchez, M. 2003 Mass spectrometric analysis of ion-emission from selected colloid thruster fuels. AIAA Paper 2003-4848.CrossRefGoogle Scholar
Dahl, D.A. 2000 Simion for the personal computer in reflection. Intl J. Mass Spectrom. 200, 325.CrossRefGoogle Scholar
Davis, M.J., Collins, A.L. & Wirz, R.E. 2019 Electrospray plume evoluation via discrete simulations. AIAA Paper 2019-590.Google Scholar
Demmons, N., Hruby, V., Spence, D., Roy, T., Ehrbar, E., Zwahlen, J., Martin, R., Ziemer, J. & Randolph, T. 2008 ST7-DRS mission colloid thruster development. AIAA Paper 2008-4823.CrossRefGoogle Scholar
Demmons, N.R., Lamarre, N., Ziemer, J.K., Parker, M. & Spence, D. 2016 Electrospray thruster propellant feedsystem for a gravity wave observatory mission. AIAA Paper 2016-4739.CrossRefGoogle Scholar
Fernández de la Mora, F., & Loscertales, I.G. 1994 The current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155184.CrossRefGoogle Scholar
Fontanese, J., Clark, G., Horányi, M., James, D. & Sternovsky, Z. 2018 Microchannel plate efficiency to detect low velocity dust impacts. J. Geophys. Res. Space Phys. 123, 99369940.CrossRefGoogle Scholar
Fraser, G.W. 2002 The ion detection efficiency of microchannel plates (MCPs). Intl J. Mass Spectrom. 215, 1330.CrossRefGoogle Scholar
Gamero-Castaño, M. 1999 The transfer of ions and charged nanoparticles from solutions to the gas phase in electrosprays. PhD thesis, Yale University.Google Scholar
Gamero-Castaño, M. 2007 Induction charge detector with multiple sensing stages. Rev. Sci. Instrum. 78, 043301.CrossRefGoogle ScholarPubMed
Gamero-Castaño, M. 2008 a The structure of electrospray beams in vacuum. J. Fluid Mech. 604, 339368.CrossRefGoogle Scholar
Gamero-Castaño, M. 2008 b Characterization of the electrosprays of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide in vacuum. Phys. Fluids 20, 032103.CrossRefGoogle Scholar
Gamero-Castaño, M. 2009 Retarding potential and induction charge detectors in tandem for measuring the charge and mass of nanodroplets. Rev. Sci. Instrum. 80, 053301.CrossRefGoogle ScholarPubMed
Gamero-Castaño, M. 2010 Energy dissipation in electrosprays and the geometric scaling of the transition region of cone–jets. J. Fluid Mech. 662, 493513.CrossRefGoogle Scholar
Gamero-Castaño, M. & Cisquella-Serra, A. 2021 Electrosprays of highly conducting liquids: a study of droplet and ion emission based on retarding potential and time-of-flight spectrometry. Phys. Rev. Fluids 6, 013701.CrossRefGoogle Scholar
Gamero-Castaño, M. & Fernández de la Mora, J. 2000 Direct measurement of ion evaporation kinetics from electrified liquid surfaces. J. Chem. Phys. 113, 815832.CrossRefGoogle Scholar
Gamero-Castaño, M. & Hruby, V. 2001 Electrospray as a source of nanoparticles for efficient colloid thrusters. J. Propul. Power 17, 977987.CrossRefGoogle Scholar
Gamero-Castaño, M. & Hruby, V. 2002 Electric measurements of charged sprays emitted by cone-jets. J. Fluid Mech. 459, 245276.CrossRefGoogle Scholar
Gamero-Castaño, M., Hruby, V., Spence, D., Demmons, N., Mccormick, R., Gasdaska, C. & Falkos, P. 2003 Micro newton colloid thruster for ST7-DRS mission. AIAA Paper 2003-4543.CrossRefGoogle Scholar
Gañán-Calvo, A.M. 1994 The size and charge of droplets in the electrospraying of polar liquids in cone-jet mode, and the minimum droplet size. J. Aerosol Sci. 25, S309S310.CrossRefGoogle Scholar
Gañán-Calvo, A.M. 1997 Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett. 79, 217220.CrossRefGoogle Scholar
Gañán-Calvo, A.M. 1999 The surface charge in electrospraying: its nature and its universal scaling laws. J. Aerosol Sci. 30, 863872.CrossRefGoogle Scholar
Gañán-Calvo, A.M., Dávila, J. & Barrero, A. 1997 Current and droplet size in the electrospraying of liquids. Scaling laws. J. Aerosol Sci. 28, 249275.CrossRefGoogle Scholar
Gañán-Calvo, A.M., Lasheras, J.C., Dávila, J. & Barrero, A. 1994 The electrostatic spray emitted from an electrified conical meniscus. J. Aerosol Sci. 25, 11211142.CrossRefGoogle Scholar
Gañán-Calvo, A.M., López-Herrera, J.M., Herrada, M.A., Ramos, A. & Montanero, J.M. 2018 Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and ac electrospray. J. Aerosol Sci. 125, 3256.CrossRefGoogle Scholar
Gañán-Calvo, A.M. & Montanero, J.M. 2009 Revision of capillary cone-jet physics: electrospray and flow focusing. Phys. Rev. E 79, 066305.CrossRefGoogle ScholarPubMed
Gemer, A.J., Sternovsky, Z., James, D. & Horanyi, M. 2020 The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors. Planet. Space Sci. 183, 104628.CrossRefGoogle Scholar
Gilmore, I.S. & Seah, M.P. 2000 Ion detection efficiency in SIMS: dependencies on energy, mass and composition for microchannel plates used in mass spectrometry. Intl J. Mass Spectrom. 202, 217229.CrossRefGoogle Scholar
Gomez Jenkins, M., Krejci, D. & Lozano, P. 2018 Cubesat constellation management using ionic liquid electrospray propulsion. Acta Astronaut. 151, 243252.CrossRefGoogle Scholar
Huh, H. & Wirz, R. 2019 Numerical simulation of electrospray thruster extraction. AIAA Paper 2019-565.Google Scholar
Krejci, D., Mier-Hicks, F., Thomas, R., Haag, T. & Lozano, P. 2017 Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs. J. Spacecr. Rockets 54, 447458.CrossRefGoogle Scholar
Liu, R., Li, Q. & Smith, L.M. 2014 Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response. J. Am. Soc. Mass Spectrom. 25, 13741383.CrossRefGoogle ScholarPubMed
Llera, K., Burch, J.L., Goldstein, R. & Goetz, C. 2020 Simultaneous observation of negatively and positively charged nanograins at comet 67P/Churyumov-Gerasimenko. Geophys. Res. Lett. 47, e2019GL086147.CrossRefGoogle Scholar
Lozano, P. & Martinez-Sanchez, M. 2002 Experimental measurements of colloid thruster plumes in the ion-droplet mixed regime. AIAA Paper 2002-3814.CrossRefGoogle Scholar
Lozano, P. & Martinez-Sanchez, M. 2005 Ionic liquid ion sources: characterization of externally wetted emitters. J. Colloid Interface Sci 282, 415421.CrossRefGoogle ScholarPubMed
Lozano, P.C. 2006 Energy properties of an EMI-Im ionic liquid ion source. J. Phys. D: Appl. Phys. 39, 126134.CrossRefGoogle Scholar
Miller, S.W., Prince, B.D. & Bemish, R.J. 2017 Orthogonal time-of-flight mass spectrometry of an ion beam with a broad kinetic energy profile. Rev. Sci. Instrum. 88, 105111.CrossRefGoogle ScholarPubMed
Miller, S.W., Prince, B.D., Bemish, R.J. & Rovey, J.L. 2014 Electrospray of 1-butyl-3-methylimidazo- lium dicyanamide under variable flow rate operations. J. Propul. Power 30, 17011710.CrossRefGoogle Scholar
Miller, S.W., Prince, B.D., Bemish, R.J. & Rovey, J.L. 2016 Mass spectrometry of selected ionic liquids in capillary electrospray at nanoliter volumetric flow rates. AIAA Paper 2016-4740.CrossRefGoogle Scholar
Miller, S.W., Prince, B.D. & Rovey, J.L. 2012 Capillary extraction of the ionic liquid [Bmim][DCA] for variable flow rate operations. AIAA Paper 2012-3738.CrossRefGoogle Scholar
Petro, E., Bruno, A., Lozano, P., Perna, L.E. & Freeman, D. 2020 Characterization of the tile electrospray emitters. AIAA Paper 2020-3612.CrossRefGoogle Scholar
Ponce-Torres, A., Rebollo-Muñoz, N., Herrada, M.A., Gañán-Calvo, A.M. & Montanero, J.M. 2018 The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J. Fluid Mech. 857, 142172.CrossRefGoogle Scholar
Romero-Sanz, I., Bocanegra, R., Fernández de la Mora, J. & Gamero-Castaño, M. 2003 Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime. J. Appl. Phys. 94, 35993605.CrossRefGoogle Scholar
Rosell-Llompart, J. & Fernández de la Mora, J. 1994 Generation of monodisperse droplets 0.3 to 4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids. J. Aerosol Sci. 25, 10931119.CrossRefGoogle Scholar
Taylor, G.I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.Google Scholar
Terhune, K.J., King, L.B., Prince, B.D. & Hawkett, B.S. 2016 Species measurements in the beam of an ionic liquid ferrofluid capillary electrospray source. AIAA Paper 2016-4550.CrossRefGoogle Scholar
Ticknor, B.W., Anderson, J.K., Fritz, B.A. & Chiu, Y.-H. 2010 Effect of aspect ratio on the wettability and electrospray properties of porous tungsten emitters with the ionic liquid [Emim][Im]. AIAA Paper 2010-6618.CrossRefGoogle Scholar
Ticknor, B.W., Miller, S.W. & Chiu, Y.H. 2009 Mass spectrometric analysis of the electrospray plume from an externally wetted tungsten ribbon emitter. AIAA Paper 2009-5088.CrossRefGoogle Scholar
Wirz, R.E. 2019 Electrospray thruster performance and lifetime investigation for the LISA mission. AIAA Paper 2019-3816.CrossRefGoogle Scholar
Ziemer, J.K., et al. 2010 Colloid micro-newton thrusters for the space technology 7 mission. In 2010 IEEE Aerospace Conference. IEEE.CrossRefGoogle Scholar
Supplementary material: File

Miller et al. supplementary material

Miller et al. supplementary material

Download Miller et al. supplementary material(File)
File 1.1 MB