Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T03:08:57.906Z Has data issue: false hasContentIssue false

Calculation of the effect of polymer additive in a converging flow

Published online by Cambridge University Press:  21 April 2006

G. Ryskin
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, IL 60201, USA

Abstract

The conical-channel flow of a dilute polymer solution is investigated theoretically. The stress field due to polymer additive is calculated using a new molecular model, based on the physical picture of the polymer molecules unravelling in strong flows and Batchelor's theory for the stress in a suspension of elongated particles. Good agreement is obtained with the experimental results of James & Saringer (1980). The absence of a significant polymer effect in a two-dimensional case (the wedge-channel flow), observed by the same authors (James & Saringer 1982a), is also explained. The fundamental differences between the proposed model and the elastic-dumbbell models are discussed.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambari, A., Deslouis, C. & Tribollet, B. 1984 Coil-stretch transition of macromolecules in laminar flow around a small cylinder. Chem. Engng Commun. 29, 6378.Google Scholar
Batchelor, G. K. 1971 The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 46, 813829.Google Scholar
Brochard, F. & de Gennes, P. G. 1977 Dynamical scaling for polymers in theta solvents. Macromol. 10, 11571161.Google Scholar
Chakraborty, A. K. & Metzner, A. B. 1986 Sink flows of viscoelastic fluids. J. Rheol. 30, 2941.Google Scholar
Daoudi, S. 1976 Interprétation d'expériences sur des solutions diluées de polymère en milieu poreux. J. Phys. Paris Lett. 37, L41L42.Google Scholar
De Gennes, P. G. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60, 50305042.Google Scholar
De Gennes, P. G. 1979 Scaling Concepts in Polymer Physics. Cornell University Press.
Ferry, J. D. 1980 Viscoelastic Properties of Polymers (3rd edn). Wiley.
Flory, P. J. 1969 Statistical Mechanics of Chain Molecules. Interscience.
Frenkel, J. 1944 Orientation and rupture of linear macromolecules in dilute solutions under the influence of viscous flow. Acta Physicochim. URSS 19, 5176.Google Scholar
Hermans, J. J. 1943 Theoretische beschouwingen over de viskositeit en de stromingsdubbelebreking in oplossingen van macromoleculaire stoffen. Physica 10, 777789.Google Scholar
Hinch, E. J. 1974 Mechanical models of dilute polymer solutions for strong flows with large polymer deformations. In Polymeres et Lubrification, Colloq. Intl CNRS vol. 233, pp. 241247.
Hinch, E. J. 1977 Mechanical models of dilute polymer solutions in strong flows. Phys. Fluids 20, S22S30.Google Scholar
James, D. F. & Saringer, J. H. 1980 Extensional flow of dilute polymer solutions. J. Fluid Mech. 97, 655671.Google Scholar
James, D. F. & Saringer, J. H. 1982a Planar sink flow of a dilute polymer solution. J. Rheol. 26, 321325.Google Scholar
James, D. F. & Saringer, J. H. 1982b Flow of dilute polymer solutions through converging channels. J. Non-Newtonian Fluid Mech. 11, 317339.Google Scholar
King, D. H. & James, D. F. 1983 Analysis of the Rouse model in extensional flow. II. Stresses generated in sink flow by flexible macromolecules and by finitely extended macromolecules. J. Chem. Phys. 78, 47494754.Google Scholar
Kuhn, W. & Kuhn, H. 1943 Die Frage nach der Aufrollung von Fadenmolekeln in strömenden Lösungen. Helv. Chim. Acta 26, 13941465.Google Scholar
Kuhn, W. & Kuhn, H. 1945 Bedeutung beschränkt freier Drehbarkeit für die Viskosität und Strömungsdoppelbrechung von Fadenmolekellösungen I. Helv. Chim. Acta 28, 15331579.Google Scholar
Odell, J. A. & Keller, A. 1985 Macromolecules in elongational flow-fields. In Polymer-Flow Interaction, AIP Conf. Proc., vol. 137 (ed. Y. Rabin), pp. 3341.
Peterlin, A. 1966 Hydrodynamics of linear macromolecules. Pure Appl. Chem. 12, 563586.Google Scholar
Rabin, Y., Henyey, F. S. & Pathria, R. K. 1985 Theoretical studies of the coil stretching transition of polymers in elongational flows. In Polymer-Flow Interaction, AIP Conf. Proc., vol. 137 (ed. Y. Rabin), pp. 4358.
Ryskin, G. 1985 Pressure drop in the sink flow of a dilute polymer solution. In Polymer-Flow Interaction, AIP Conf. Proc., vol. 137 (ed. Y. Rabin), pp. 7175.
Stockmayer, W. H. 1979 Dynamics of chain molecules and transport in dilute solution. Ber. Bunsenges. Phys. Chem. 83, 374379.Google Scholar
Tanner, R. I. 1975 Stresses in dilute solutions of bead-nonlinear-spring macromolecules. III. Friction coefficient varying with dumbbell extension. Trans. Soc. Rheol. 19, 557582.Google Scholar
Tanner, R. I. 1985 Engineering Rheology. Clarendon.