Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-01T22:07:17.147Z Has data issue: false hasContentIssue false

Buoyant miscible displacement flows in rectangular channels

Published online by Cambridge University Press:  10 August 2017

S. M. Taghavi*
Affiliation:
Department of Chemical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
R. Mollaabbasi
Affiliation:
Department of Chemical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
Y. St-Hilaire
Affiliation:
Department of Chemical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
*
Email address for correspondence: [email protected]

Abstract

Buoyant displacement flows of two miscible fluids in rectangular channels are studied, theoretically and experimentally. The scenario considered involves the displacement of a fluid by a slightly heavier one at nearly horizontal channel inclinations, where inertial effects are weak and laminar stratified flows may be expected. In the theoretical part, a lubrication approximation model is developed to simplify the displacement flow governing equations and furnish a semi-analytical solution for the heavy and light fluid flux functions. Three key dimensionless parameters govern the fluid flow motion, i.e. a buoyancy number, the viscosity ratio and the channel cross-section aspect ratio. When these parameters are specified, the reduced model can deliver the interface propagation in time, leading and trailing front heights, shapes and speeds, cross-sectional velocity fields, etc. In addition, the model can be exploited to provide various classifications such as single or multiple fronts as well as main displacement flow regimes at long times such as no sustained backflows, stationary interface flows and sustained backflows. Focusing on the variation of the buoyancy number, a large number of iso-viscous displacement experiments are performed in a square duct and the results are compared with those of the lubrication model. Qualitative displacement flow features observed in the theory and experiments are in good agreement, in particular, in terms of the main displacement flow regimes. The quantitative comparisons are also reasonable for small and moderate imposed displacement flow velocities. However, at large flow rates, a deviation of the experimental results from the model results is observed, which may be due to the presence of non-negligible inertial effects.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, K., Taghavi, S. M. & Frigaard, I. A. 2013a Miscible density-unstable displacement flows in inclined tube. Phys. Fluids 25, 067101.CrossRefGoogle Scholar
Alba, K., Taghavi, S. M. & Frigaard, I. A. 2013b A weighted residual method for two-layer non-Newtonian channel flows: steady-state results and their stability. J. Fluid Mech. 731, 509544.Google Scholar
Amaouche, M., Mehidi, N. & Amatousse, N. 2007 Linear stability of a two-layer film flow down an inclined channel: a second-order weighted residual approach. Phys. Fluids 19, 084106.Google Scholar
Amiri, A., Larachi, F. & Taghavi, S. M. 2016 Buoyant miscible displacement flows in vertical pipe. Phys. Fluids 28 (10), 102105.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.Google Scholar
Beckett, F. M., Mader, H. M., Phillips, J. C., Rust, A. C. & Witham, F. 2011 An experimental study of low-Reynolds-number exchange flow of two newtonian fluids in a vertical pipe. J. Fluid Mech. 682, 652670.Google Scholar
Benjamin, T. J. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31 (2), 209248.Google Scholar
Birman, V. K., Battandier, B. A., Meiburg, E. & Linden, P. F. 2007 Lock-exchange flows in sloping channels. J. Fluid Mech. 577, 5377.Google Scholar
Charles, M. E. & Lilleleht, L. U. 1965 Co-current stratified laminar flow of two immiscible liquids in a rectangular conduit. Can. J. Chem. Engng 43 (3), 110116.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1996 Miscible displacements in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. 326, 5790.Google Scholar
Debacq, M., Hulin, J. P., Salin, D., Perrin, B. & Hinch, E. J. 2003 Buoyant mixing of miscible fluids of varying viscosities in vertical tube. Phys. Fluids 15, 38463855.Google Scholar
Gondret, P., Rakotomalala, N., Rabaud, M., Salin, D. & Watzky, P. 1997 Viscous parallel flows in finite aspect ratio Hele-Shaw cell: analytical and numerical results. Phys. Fluids 9 (6), 18411843.CrossRefGoogle Scholar
Govindarajan, R. & Sahu, K. C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46, 331353.CrossRefGoogle Scholar
Hallez, Y. & Magnaudet, J. 2008 Effects of channel geometry on buoyancy-driven mixing. Phys. Fluids 20, 053306.CrossRefGoogle Scholar
Hallez, Y. & Magnaudet, J. 2009 A numerical investigation of horizontal viscous gravity currents. J. Fluid Mech. 630, 7191.Google Scholar
Huppert, H. E. & Hallworth, M. A. 2007 Bi-directional flows in constrained systems. J. Fluid Mech. 578, 95112.Google Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of Two-Fluid Dynamics. Part 2: Lubricated Transport, Drops and Miscible Liquids, Interdisciplinary Applied Mathematics Series, vol. 4. Springer.Google Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N. & Salin, D. 1997 3d instability of miscible displacements in a Hele-Shaw cell. Phys. Rev. Lett. 79, 52545257.CrossRefGoogle Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. & Yortsos, Y. 1999 Miscible displacement in a Hele-Shaw cell at high rates. J. Fluid Mech. 398, 299319.Google Scholar
Leal, G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.Google Scholar
Leveque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.Google Scholar
Malham, I. B., Jarrige, N., Martin, J., Rakotomalala, N., Talon, L. & Salin, D. 2010 Lock-exchange experiments with an autocatalytic reaction front. J. Chem. Phys. 133 (24), 244505.Google Scholar
Martin, J., Rakotomalala, N., Talon, L. & Salin, D. 2011 Viscous lock-exchange in rectangular channels. J. Fluid Mech. 673, 132146.Google Scholar
Matson, G. P. & Hogg, A. J. 2012 Viscous exchange flows. Phys. Fluids 24 (2), 023102.Google Scholar
Mollaabbasi, R. & Taghavi, S. M. 2016 Buoyant displacement flows in slightly non-uniform channels. J. Fluid Mech. 795, 876913.CrossRefGoogle Scholar
Nelson, E. B. & Guillot, D. 2006 Well Cementing, 2nd edn. Schlumberger Educational Services.Google Scholar
Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments. J. Fluid Mech. 326, 3756.CrossRefGoogle Scholar
Rakotomalala, N., Salin, D. & Watzky, P. 1997 Miscible displacement between two parallel plates: BGK lattice gas simulations. J. Fluid Mech. 338, 277297.Google Scholar
Redapangu, P. R., Sahu, K. C. & Vanka, S. P. 2012 A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach. Phys. Fluids 24 (10), 102110.CrossRefGoogle Scholar
Redapangu, P. R., Sahu, K. C. & Vanka, S. P. 2013 A lattice Boltzmann simulation of three-dimensional displacement flow of two immiscible liquids in a square duct. Trans. ASME J. Fluids Engng 135 (12), 121202.Google Scholar
Sahu, K. C., Ding, H., Valluri, P. & Matar, O. K. 2009a Linear stability analysis and numerical simulation of miscible two-layer channel flow. Phys. Fluids 21, 042104.Google Scholar
Sahu, K. C., Ding, H., Valluri, P. & Matar, O. K. 2009b Pressure-driven miscible two-fluid channel flow with density gradients. Phys. Fluids 21, 043603.Google Scholar
Schweizer, P. & Kistler, S. F. 2012 Liquid Film Coating: Scientific Principles and Their Technological Implications. Springer.Google Scholar
Seon, T., Hulin, J.-P., Salin, D., Perrin, B. & Hinch, E. J. 2004 Buoyant mixing of miscible fluids in tilted tubes. Phys. Fluids 16 (12), L103L106.Google Scholar
Seon, T., Hulin, J.-P., Salin, D., Perrin, B. & Hinch, E. J. 2005 Buoyancy driven miscible front dynamics in tilted tubes. Phys. Fluids 17 (3), 031702.CrossRefGoogle Scholar
Seon, T., Hulin, J.-P., Salin, D., Perrin, B. & Hinch, E. J. 2006 Laser-induced fluorescence measurements of buoyancy driven mixing in tilted tubes. Phys. Fluids 18, 041701.Google Scholar
Seon, T., Znaien, J., Salin, D., Hulin, J.-P., Hinch, E. J. & Perrin, B. 2007a Front dynamics and macroscopic diffusion in buoyant mixing in a tilted tube. Phys. Fluids 19, 125105.Google Scholar
Seon, T., Znaien, J., Salin, D., Hulin, J.-P., Hinch, E. J. & Perrin, B. 2007b Transient buoyancy-driven front dynamics in nearly horizontal tubes. Phys. Fluids 19 (12), 123603.Google Scholar
Shin, J. O., Dalziel, S. B. & Linden, P. F. 2004 Gravity currents produced by lock exchange. J. Fluid Mech. 521, 134.Google Scholar
Taghavi, S. M., Alba, K. & Frigaard, I. A. 2012a Buoyant miscible displacement flows at moderate viscosity ratios and low Atwood numbers in near-horizontal ducts. Chem. Engng Sci. 69, 404418.Google Scholar
Taghavi, S. M., Alba, K., Seon, T., Wielage-Burchard, K., Martinez, D. M. & Frigaard, I. A. 2012b Miscible displacement flows in near-horizontal ducts at low Atwood number. J. Fluid Mech. 696, 175214.CrossRefGoogle Scholar
Taghavi, S. M., Seon, T., Martinez, D. M. & Frigaard, I. A. 2009 Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 135.Google Scholar
Taghavi, S. M., Seon, T., Martinez, D. M. & Frigaard, I. A. 2010 Influence of an imposed flow on the stability of a gravity current in a near horizontal duct. Phys. Fluids 22, 031702.CrossRefGoogle Scholar
Taghavi, S. M., Seon, T., Wielage-Burchard, K., Martinez, D. M. & Frigaard, I. A. 2011 Stationary residual layers in buoyant Newtonian displacement flows. Phys. Fluids 23, 044105.Google Scholar
Yang, Z. & Yortsos, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of large aspect ratio. Phys. Fluids 9 (2), 286298.Google Scholar
Yee, H. C., Warming, R. F. & Harten, A. 1985 Implicit total variation diminishing (TVD) schemes for steady-state calculations. J. Comput. Phys. 57, 327360.CrossRefGoogle Scholar
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015a Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.CrossRefGoogle Scholar
Zheng, Z., Rongy, L. & Stone, H. A. 2015b Viscous fluid injection into a confined channel. Phys. Fluids 27 (6), 062105.Google Scholar