Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:11:16.919Z Has data issue: false hasContentIssue false

Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers

Published online by Cambridge University Press:  26 April 2006

David S. Dandy
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
L. Gary Leal
Affiliation:
Department of Chemical Engineering, Caltech, Pasadena, CA 91125, USA

Abstract

Numerical solutions have been obtained for steady streaming flow past an axisymmetric drop over a wide range of Reynolds numbers (0.005 [les ] Re [les ] 250), Weber numbers (0.005 [les ] We [les ] 14), viscosity ratios (0.001 [les ] λ [les ] 1000), and density ratios (0.001 [les ] ζ [les ] 1000). Our results indicate that at lower Reynolds numbers the shape of the drop tends toward a spherical cap with increasing We, but at higher Re the body becomes more disk shaped with increasing We. Unlike the recirculating wake behind an inviscid bubble or solid particle, the eddy behind a drop is detached from the interface. The size of the eddy and the separation distance from the drop depend on the four dimensionless parameters of the problem. The motion of the fluid inside the drop appears to control the behaviour of the external flow near the body, and even for cases when λ and ζ [Lt ] 1 (a ‘real’ bubble), a recirculating wake remains unattached.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brignell, A. S. 1973 The deformation of a liquid drop at small Reynolds number. Q. J. Mech. Appl. Maths 26, 99107.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Christov, C. I. & Volkov, P. K. 1985 Numerical investigation of the steady viscous flow past a stationary deformable bubble. J. Fluid Mech. 158, 341364.Google Scholar
Dandy, D. S. 1987 Ph.D. Thesis, California Institute of Technology, Pasadena.
Dandy, D. S. & Leal, L. G. 1986 Boundary-layer separation from a smooth slip surface. Phys. Fluids 29, 13601366.Google Scholar
Dandy, D. S. & Leal, L. G. 1989 A Newton's method scheme for solving free-surface flow problems. Intl J. Numer. Meth. Fluids. (In Press.)Google Scholar
Dorodnitsyn, A. A. & Meller, N. A. 1968 Approaches to the solution of the stationary Navier-Stokes equations. USSR Comput. Maths Math. Phys. 8, 205217.Google Scholar
Eiseman, P. R. 1985 Grid generation for fluid mechanics computations. Ann. Rev. Fluid Mech. 17, 487522.Google Scholar
Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98, 819855.Google Scholar
Garner, F. H. & Tayeban, M. 1960 The importance of the wake in mass transfer from both continuous and dispersed phase systems. Anales. Real. Soc., Espan. Fis. Quim. B56, no. 5.Google Scholar
Grosch, C. E. & Orszag, S. A. 1977 Numerical solution of problems in unbounded regions: coordinate transforms. J. Comput. Phys. 25, 273295.Google Scholar
Harper, J. F. 1972 The motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59129.Google Scholar
Harper, J. F. & Moore, D. W. 1968 The motion of a spherical liquid drop at high Reynolds number. J. Fluid Mech. 32, 367391.Google Scholar
Hendrix, C. D., Dave, S. B. & Johnson, H. F. 1967 Translation of continuous phase in the wakes of single rising drops. AIChE. J. 13, 10721077.Google Scholar
Hu, S. & Kintner, R. C. 1955 The fall of single liquid drops through water. AIChE J. 1, 4248.Google Scholar
Israeli, M. 1970 A fast implicit numerical method for time-dependent viscous flows. Stud. Appl. Maths 49, 327349.Google Scholar
Kang, I. S. & Chang, H. N. 1982 The effect of turbulence promoters on mass transfer - numerical analysis and flow visualization. Intl. J. Heat Mass Transfer 25, 11671181.Google Scholar
Leal, L. G. 1989 Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids A 1, 124131.Google Scholar
Leal, L. G. & Acrivos, A. 1969 The effect of base bleed on the steady separated flow past bluff objects. J. Fluid Mech. 38, 735752.Google Scholar
LeClair, B. P. 1970 Ph.D. thesis, McMaster University, Hamilton, Ontario.
LeClair, B. P., Hamielec, A. E., Pruppacher, H. R. & Hall, W. D. 1972 A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. J. Atmos. Sci. 29, 728740.Google Scholar
Lighthill, J. 1986 An Informal Introduction to Theoretical Fluid Mechanics. Clarendon.
Masliyah, J. H. 1970 Ph.D. thesis, University of British Columbia, Vancouver.
Miksis, M., Vanden-Broeck, J.-M. & Keller, J. B. 1981 Axisymmetric bubble or drop in a uniform flow. J. Fluid Mech. 108, 89100.Google Scholar
Moore, D. W. 1959 The rise of a gas bubble in a viscous liquid. J. Fluid Mech. 6, 113130.Google Scholar
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.Google Scholar
Moore, D. W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23, 749766.Google Scholar
Moore, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.
Nakamura, I. 1976 Steady wake behind a sphere. Phys. Fluids 19, 58.Google Scholar
Nisi, H. & Porter, A. W. 1923 On eddies in air. Phil. Mag. 46, 754768.Google Scholar
Oliver, D. L. R. & Chung, J. N. 1987 Flow about a fluid sphere at low to moderate Reynolds numbers. J. Fluid Mech. 177, 118.Google Scholar
Parlange, J.-Y. 1970 Motion of spherical drops at large Reynolds numbers. Acta Mech. 9, 323328.Google Scholar
Peacemann, D. W. & Rachford, H. H. 1955 The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Maths 3, 28.Google Scholar
Proudman, I. & Pearson, J. R. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.Google Scholar
Pruppacher, H. R. & Beard, K. V. 1970 Wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Met. Soc. 96, 247256.Google Scholar
Rimon, Y. & Cheng, S. I. 1969 Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers. Phys. Fluids 12, 949959.Google Scholar
Rivkind, V. Y. & Ryskin, G. 1976 Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers. Fluid Dyn. 11, 512.Google Scholar
Ryskin, G. 1980 The extensional viscosity of a dilute suspension of spherical particles at intermediate microscale Reynolds numbers. J. Fluid Mech. 99, 513529.Google Scholar
Ryskin, G. & Leal, L. G. 1983 Orthogonal mapping. J. Comput. Phys. 50, 71100.Google Scholar
Ryskin, G. & Leal, L. G. 1984a Large deformations of a bubble in axisymmetric steady flows. Part 1. Numerical techniques. J. Fluid Mech. 148, 117.Google Scholar
Ryskin, G. & Leal, L. G. 1984b Large deformations of a bubble in axisymmetric steady flows. Part 2. The rising bubble. J. Fluid Mech. 148, 1935.Google Scholar
Satapathy, R. & Smith, W. 1960 The motion of single immiscible drops through a liquid. J. Fluid Mech. 10, 561570.Google Scholar
Shoemaker, P. D. & de Chazal, L. E. Marc 1968 Dimpled and skirted liquid drops moving through viscous liquid media. Chem. Engng Sci. 24, 795798.Google Scholar
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11, 11041108.Google Scholar
Taylor, T. D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18, 466476.Google Scholar
Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. 1985 Numerical Grid Generation: Foundations and Applications. Elsevier.
Thorsen, G., Stordalen, R. M. & Terjesen, S. G. 1968 On the terminal velocity of circulating and oscillating liquid drops. Chem. Engng Sci. 23, 413426.Google Scholar
Wellek, R. M., Agrawal, A. K. & Skelland, A. H. P. 1966 Shape of liquid drops moving in liquid media. AIChE J. 12, 854862.Google Scholar