Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-20T17:23:17.415Z Has data issue: false hasContentIssue false

Buoyancy-driven flow between two rooms coupled by two openings at different levels

Published online by Cambridge University Press:  14 December 2007

L. P. THOMAS
Affiliation:
Instituto de Física Arroyo Seco, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Pcia. de Buenos Aires, Pinto 399, B7000GHG Tandil, Argentina
B. M. MARINO
Affiliation:
Instituto de Física Arroyo Seco, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Pcia. de Buenos Aires, Pinto 399, B7000GHG Tandil, Argentina
R. TOVAR
Affiliation:
Centro de Investigación en Energía UNAM, Apdo. Postal 34, Temixco Mor. 62580 México
P. F. LINDEN
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA

Abstract

The stack-driven flow between two interconnected rooms produced by a single heat source is studied. In particular, the features of the transient flow for different positions and areas of two openings in the shared vertical wall are analysed. An analytical model provides the time evolution of the stratified flows in rooms of any size. The concept of an equivalent layer representing a non-uniform density profile, which is useful in other contexts, is included in the theoretical approach and provides physical insight and aids the mathematical solution of the problem. New salt-bath experiments are performed to simulate the thermal forcing between the rooms, to validate the model and to analyse the mixing generated and the effects of a source of volume in the configuration studied.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, S. K. & Foss, J. F. 2003 The Discharge coefficient of a planar submerged slit-jet. Trans. ASME I: J. Fluids Engng, 125, 613619.Google Scholar
Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a connected region. J. Fluid Mech. 37, 5180.CrossRefGoogle Scholar
Cenedese, C. & Dalziel, S. B. 1998 Concentration and depth field determined by the light transmitted through a dyed solution. In Proc. 8th Intl Symp. on Flow Visualization (ed. Carlo-Magno, G. M. & Grant, I.). ISBN 0953399109, paper 061 (CD rom).Google Scholar
Dalziel, S. B. 1993 Rayleigh–Taylor instability: experiments with image analysis. Dyn. Atmos Oceans 20, 127153.CrossRefGoogle Scholar
Dalziel, S. B. 1995 DigImage: System Overview. Cambridge Environmental Research Consultants, UK.Google Scholar
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech., 435 377396.CrossRefGoogle Scholar
Lin, Y. J. P. & Linden, P. F. 2002 Buoyancy-driven ventilation between two chambers. J. Fluid Mech. 463, 293312.CrossRefGoogle Scholar
Linden, P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.CrossRefGoogle Scholar
Linden, P. F., Lane-Serff, G. F. & Smeed, D. A. 1990 Emptying filling boxes: the fluid mechanics of natural ventilation. J. Fluid Mech., 212, 300335.CrossRefGoogle Scholar
Marino, M. B., Thomas, L. P. & Linden, P. F. 2005 The front condition for gravity currents. J. Fluid Mech. 536, 4978.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption. J. Fluid Mech. 173, 431472.CrossRefGoogle Scholar
Worster, M. G. & Huppert, H. E. 1983 Time-dependent density profilles in a filling box. J. Fluid Mech. 132, 457466.CrossRefGoogle Scholar