Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T19:11:39.586Z Has data issue: false hasContentIssue false

Buoyancy-driven convection with a uniform magnetic field. Part 1. Asymptotic analysis

Published online by Cambridge University Press:  26 April 2006

T. Alboussière
Affiliation:
Commissariat à l'Energie Atomique DTA/CEREM/DEM/SESC, Centre d'Etudes Nucléaires de Grenoble, 85 X, 38041 Grenoble Cedex, France
J. P. Garandet
Affiliation:
Commissariat à l'Energie Atomique DTA/CEREM/DEM/SESC, Centre d'Etudes Nucléaires de Grenoble, 85 X, 38041 Grenoble Cedex, France
R.
Affiliation:
INPG Laboratoire Madylam UA CNRS 1326, ENSHMG, BP 95, 38402 St Martin d'Héres Cedex, France

Abstract

We study the convection of an electrically conducting liquid in a horizontal cylinder (horizontal Bridgman configuration). A uniform steady vertical magnetic field is externally imposed. The thermal and magnetic Prandtl numbers are assumed equal to zero. The thermal field is obtained assuming pure conduction and certain conditions at the boundaries, so that the heat flux is axial and uniform. The influence of the cylinder's cross-sectional shape is examined. In the high Hartmann number limit (Ha [Gt ] 1), an analytical solution is found for the fully established flow. With electrically insulating walls, the magnetically damped convective velocity varies as Ha-2 when the cross-section has a horizontal plane of symmetry, while it varies as Ha-1 for non-symmetrical shapes. When the walls are perfectly conducting, the damped velocity always varies as Ha-2.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bontoux, P., Roux, B., Schiroky, G. H., Markhan, B. L. & Rosenberg, F. 1986 Convection in the vertical midplane of a horizontal cylinder. Comparison of two-dimensional approximations with three-dimensional results. Intl J. Heat Mass Transfer 29, 227240.Google Scholar
Burton, J. A., Prim, R. C. & Slichter, W. P. 1953 The distribution of solute in crystals grown from the melt. Part I. Theoretical. J. Chem. Phys. 21, 19871996.Google Scholar
Carlson, D. J. & Witt, A. F. 1992 Quantitative analysis of the effect of vertical magnetic fields on microsegregation on Te-doped LEC GaAs. J. Cryst. Growth 116, 461472.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.
Chang, C. C. & Lundgren, T. S. 1961 Duct flow in magnetohydrodynamics. Z. Angew. Math. Phys. 12, 100114.Google Scholar
Elsasser, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.Google Scholar
Garandet, J. P., Alboussière, T. & Moreau, R. 1992 Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Intl J. Heat Mass Transfer 35, 741748.Google Scholar
Gershuni, G. Z. & Zhukhovitskii, E. M. 1972 Connective Stability of Incompressible Fluids. Moskva: Izdatel'stvo “Nauka”.
Hjellming, L. N. 1990 A thermal model for Czochralski silicon crystal growth with an axial magnetic field. J. Cryst. Growth 104, 327344.Google Scholar
Hjellming, L. N. & Walker, J. S. 1986 Melt motion in a Czochralski crystal puller with an axial magnetic field: isothermal motion. J. Fluid Mech. 164, 237273.Google Scholar
Hunt, J. C. R. 1965 Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech. 21, 577590.Google Scholar
Hunt, J. C. R. & Malcolm, D. G. 1968 Some electrically driven flows in magnetohydrodynamics. Part 2. Theory and experiment. J. Fluid Mech. 33, 775801.Google Scholar
Hunt, J. C. R. & Shercliff, J. A. 1971 Magnetohydrodynamics at high Hartmann number. Ann. Rev. Fluid Mech. 3, 3762.Google Scholar
Hunt, J. C. R. & Stewartson, K. 1965 Magnetohydrodynamic flow in rectangular ducts. Part 2. J. Fluid Mech. 23, 563581.Google Scholar
Kulikovskii, A. G. 1968 Slow steady flows of a conducting fluid at high Hartmann numbers. Isz. Akad. Nauk. SSSR Mekh. Zhidk. i Gaza 3, 310.Google Scholar
Langlois, W. E. 1985 Buoyancy-driven flows in crystal-growth melts. Ann. Rev. Fluid Mech. 17, 191215.Google Scholar
Matthiesen, D. H., Wargo, M. J., Motakef, S., Carlson, D. J., Nakos, J. S. & Witt, A. F. 1987 Dopant segregation during vertical Bridgman–Stockbarger growth with melt stabilization by strong axial magnetic fields. J. Cryst. Growth 85, 557560.Google Scholar
Moreau, R. 1990 Magnetohydrodynamics. Kluwer.
Motakef, S. 1990 Magnetic field elimination of convective interference with segregation during vertical-Bridgman growth of doped semiconductors. J. Cryst. Growth 104, 833850.Google Scholar
Shercliff, J. A. 1953 Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc. Camb. Phil. Soc. 49, 136144.Google Scholar
Shercliff, J. A. 1956 The flow of conducting fluids in circular pipes under transverse magnetic fields. J. Fluid Mech. 1, 644666.Google Scholar