Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T15:20:30.207Z Has data issue: false hasContentIssue false

Bubble rise under an inclined plate

Published online by Cambridge University Press:  26 April 2006

T. Maxworthy
Affiliation:
Departments of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089–1191, USA

Abstract

We extend existing measurements of bubble rise velocity or, equivalently, drag in the spherical-cap regime to include the effects of rise under an inclined plate which both changes the bubble shape and the effective buoyancy force in the direction of bubble motion. As found previously for rise in inclined tubes for example (Zukoski 1966) there is an angle of inclination for which the rise velocity is a maximum. We propose, also, an inviscid model that appears to describe the results adequately, as is the case for the spherical-cap regime in an extended fluid (Davies & Taylor 1950).

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnold, R. A. 1938 Interim report on wave pressure research. J. Inst. Civ. Engrs 12, 202226.Google Scholar
Carrier, G. F. & Greenspan, H. P. 1958 Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 17, 97110.Google Scholar
Carrier, G. F. & Noiseux, C. G. 1983 Reflections of obliquely incident tsunamis J. Fluid Mech. 133, 147160.Google Scholar
Cooker, M. J. & Peregrine, D. H. 1990 Violent water motion at breaking point impact. In Proc. 22nd Intl Conf. on Coastal Engng, The Hague, Netherlands (ed. B. L. Edge), pp. 164176. ASCE.
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Springer.
Dean, R. G. 1965 Stream-function representation of nonlinear ocean waves. J. Geophys. Res. 70, 45164572.Google Scholar
Dussan, V. E. B. & Davis, S. H. 1974 On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 7195.Google Scholar
Elgar, S. & Guza, R. T. 1986 Shoaling gravity waves: comparisons between field observations, linear theory and a nonlinear model. J. Fluid Mech. 158, 4770.Google Scholar
Goda, Y. 1975 Irregular wave deformation in the surf zone. Coast. Engng Japan 18, 1326.Google Scholar
Goring, D. G. & Raichlen, F. 1980 The generation of long waves in the laboratory. In Proc. 17th Intt Conf. Coastal Engng, Sydney, Australia (ed. B. L. Edge). ASCE.
Green, G. 1837 On the motion of waves in a variable canal of small depth and width. Camb. Phil. Trans. 6, 457462.Google Scholar
Grilli, S. & Svendsen, I. A. 1990a Computation of nonlinear wave kinematics during propagation and run-up on a slope In Water Wave Kinematics, NATO ASI Series, E: Vol. 178, pp. 387412. Kluwer.
Grilli, S. & Svendsen, I. A. 1990b Problems and global accuracy in the boundary element solution of nonlinear wave flows. Engineering Analysis with Boundary Elements, Nonlinear wave analysis, 7 (4).Google Scholar
Guza, R. T. & Thornton, E. B. 1980 Local and shoaled comparisons of sea surface elevations and pressure. J. Geophys. Res. 85, 19791808.Google Scholar
Guza, R. T. & Thornton, E. B. 1981 Wave set-up on a natural beach. J. Geophys. Res. 86, 15241530.Google Scholar
Guza, R. T. & Thornton, E. B. 1982 Swash oscillations on a natural beach. J. Geophys. Res. 87, 483491.Google Scholar
Hall, J. V. & Watts, J. W. 1953 Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Tech Memo 33. Beach Erosion Board, US Army Corps of Engineers, 14 pp. (available through NTIS).
Hammack, J., Scheffner, N. & Segur, H. 1991 A note on the intensity of periodic rip currents. J. Geophys. Res. 96, 49044914.Google Scholar
Hibberd, S. & Peregrine, D. H. 1979 Surf and run-up on a beach: a uniform bore. J. Fluid Mech. 95, 323345.Google Scholar
Hiroi, I. 1919 On a method of estimating the force of waves. J. College of Engng, Tokyo Imperial Univ. 10, 119.Google Scholar
Ho, D. V. & Meyer, R. E. 1962 Climb of a bore on a beach. Part 1. Uniform beach slope. J. Fluid Mech. 14, 305318.Google Scholar
Kobayashi, N., Cox, D. T. & Wurjanto, A. 1990 Irregular wave reflection and run-up on rough impermeable slopes. J. Waterway, Port, Coastal and Ocean Engng Div. ASCE 116, 708726.Google Scholar
Kobayashi, N., DeSilva, G. S. & Watson, K. D. 1989 Wave transformation and swash oscillation on gentle and steep slopes. J. Geophys. Res. 94 (C1), 951966.Google Scholar
Kobayashi, N. & Greenwald, J. H. 1987 Wave reflection and run-up on rough slopes. J. Waterway, Port, Coastal and Ocean Engng Div. ASCE 113, 282298.Google Scholar
Kobayashi, N., Otta, A. K., Roy, I. & Greenwald, J. H. 1988 Waterline oscillation and riprap movement. J. Waterway, Port, Coastal and Ocean Engng Div. ASCE 114, 281296.Google Scholar
Madsen, O. S. & Mei, C. C. 1969 The transformation of a solitary wave over an uneven bottom. J. Fluid Mech. 39, 781791.Google Scholar
Mahony, J. J. & Pritchard, W. G. 1980 Wave reflexion from beaches. J. Fluid Mech. 101, 809832.Google Scholar
Mei, C. C. & Agnon, Y. 1989 Long-period oscillations in a harbour induced by incident short waves. J. Fluid Mech. 208, 595608.Google Scholar
Meyer, R. E. 1988a On the shore singularity of water wave theory. Part I. The local model. Phys. Fluids 29, 31423163.Google Scholar
Meyer, R. E. 1988b On the shore singularity of water wave theory. Part II. Small waves do not break on gentle beaches. Phys. Fluids 29, 31643171.Google Scholar
Meyer, R. E., Strikwerda, J. C. & Vanden-Broeck, J.-M. 1991 Notes on wave attenuation on beaches. Wave Motion (submitted).Google Scholar
Miller, R. L. 1968 Experimental determination of run-up of undular and fully developed bores. J. Geophys. Res. 73, 44974510.Google Scholar
Minikin, R. R. 1950 Winds, Waves and Maritime Structures. London: Charles Griffin, 294 pp.
Mizuguchi, M. 1982 A field observation of wave kinematics in the surf zone. Coastal Engng Japan 23, 8190.Google Scholar
Packwood, A. R. 1980 Surf and run-up on beaches. Ph.D. thesis, University of Bristol.
Peregrine, D. H. 1983 Breaking waves on beaches. Ann. Rev. Fluid Mech. 15, 149178.Google Scholar
Ramsden, J. D. & Raichlen, F. 1990 Forces on a vertical wall due to incident bores. J. Waterway, Port, Coastal and Ocean Engng Div. ASCE 116, 252266.Google Scholar
Shen, M. C. & Meyer, R. E. 1963 Climb of a bore on a beach. Part 3. J. Fluid Mech. 16, 113125.Google Scholar
Svendsen, I. A. & Madsen, P. A. 1984 A turbulent bore on the beach. J. Fluid Mech. 148, 7396.Google Scholar
Synolakis, C. E. 1987 The run-up of solitary waves. J. Fluid Mech. 185, 523545.Google Scholar
Synolakis, C. E. 1990 Laboratory generation of long waves. J. Waterway, Port, Coastal and Ocean Engng Div. ASCE 116, 252266.Google Scholar
Synolakis, C. E. 1991 Green's law and the evolution of solitary waves.. Phys. Fluids A 3, 490491.Google Scholar
Synolakis, C. E., Deb, M. K. & Skjelbreia, J. E. 1988 The anomalous behaviour of the run-up of cnoidal waves. Phys. Fluids 31, 35.Google Scholar
Wu, J.-K. & Liu, P. L.-F. 1990 Harbour excitations by incident wave groups. J. Fluid Mech. 217, 595613.Google Scholar
Yeh, H., Ghazali, A. & Marton, I. 1989 Experimental study of bore run-up. J. Fluid Mech. 206, 563578.Google Scholar
Yen, H. & Mok, K.-M. 1990 On turbulence in bores.. Phys. Fluids A 2, 821828.Google Scholar
Zelt, J. A. & Raichlen, F. 1991 Overland flow from solitary waves. J. Waterway, Port, Coastal and Ocean Engng Div. ASCE, 117, 247263.Google Scholar