Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T09:35:11.606Z Has data issue: false hasContentIssue false

Broadband reconstruction of inhomogeneous turbulence using spectral proper orthogonal decomposition and Gabor modes

Published online by Cambridge University Press:  06 February 2020

A. S. Ghate
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
A. Towne
Affiliation:
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
S. K. Lele*
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: [email protected]

Abstract

A new methodology to construct three-dimensional, temporally stationary but spatially inhomogeneous, incompressible turbulence is presented. The method combines use of the data-driven spectral proper orthogonal decomposition (SPOD) to identify and isolate large-scale coherent motions of the flow, together with a physics-based enrichment algorithm using spatiotemporally localized Gabor modes that capture the inertial subrange turbulence. This fusion of data-driven and physics-based methods enables a statistically correct reconstruction of broadband turbulent flows using fewer modes than would be required using SPOD alone. To demonstrate the approach, we consider the problem of reconstructing wake turbulence on a plane downstream of a dragging actuator disk impinged by homogeneous isotropic turbulence. The reconstructed flow has single- and two-point correlations that are consistent with the reference high-resolution simulation data and could be used to generate statistically consistent inflow boundary conditions for subsequent simulations.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brès, G. A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A. V., Towne, A., Lele, S. K., Colonius, T. & Schmidt, O. T. 2018 Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.CrossRefGoogle Scholar
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22 (1), 015110.CrossRefGoogle Scholar
Canuto, V. & Dubovikov, M. 1996 A dynamical model for turbulence. I. General formalism. Phys. Fluids 8 (2), 571586.CrossRefGoogle Scholar
Deck, S. 2005 Zonal-detached-eddy simulation of the flow around a high-lift configuration. AIAA J. 43 (11), 23722384.CrossRefGoogle Scholar
Ghate, A. S.2018 Gabor mode enrichment in large eddy simulation of turbulent flows. PhD thesis, Stanford University.Google Scholar
Ghate, A. S., Ghaisas, N., Lele, S. K. & Towne, A. 2018 Interaction of small scale homogenenous isotropic turbulence with an actuator disk. In 2018 Wind Energy Symposium, AIAA Paper 2018-0753.Google Scholar
Ghate, A. S. & Lele, S. K. 2017 Subfilter-scale enrichment of planetary boundary layer large eddy simulation using discrete Fourier–Gabor modes. J. Fluid Mech. 819, 494539.CrossRefGoogle Scholar
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Mann, J. 1994 The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141168.CrossRefGoogle Scholar
Muñoz-Esparza, D., Kosović, B., Mirocha, J. & van Beeck, J. 2014 Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Boundary-Layer Meteorol. 153 (3), 409440.CrossRefGoogle Scholar
Nicoud, F., Toda, H. B., Cabrit, O., Bose, S. & Lee, J. 2011 Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23 (8), 085106.CrossRefGoogle Scholar
Nordström, J., Nordin, N. & Henningson, D. 1999 The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput. 20 (4), 13651393.CrossRefGoogle Scholar
Quon, E. W., Ghate, A. S. & Lele, S. K. 2018 Enrichment methods for inflow turbulence generation in the atmospheric boundary layer. J. Phys.: Conf. Ser. 1037, 072054.Google Scholar
Sanjose, M., Towne, A., Jaiswal, P., Moreau, S., Lele, S. & Mann, A. 2019 Modal analysis of the laminar boundary layer instability and tonal noise of an airfoil at Reynolds number 150 000. Intl J. Aeroacoust. 18, 317350.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Srinivasan, P., Guastoni, L., Azizpour, H., Schlatter, P. & Vinuesa, R. 2019 Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4 (5), 054603.CrossRefGoogle Scholar
Symon, S., Sipp, D. & McKeon, B. J. 2019 A tale of two airfoils: resolvent-based modelling of an oscillator versus an amplifier from an experimental mean. J. Fluid Mech. 881, 5183.CrossRefGoogle Scholar
Towne, A., Colonius, T., Jordan, P., Cavalieri, A. V. G. & Brès, G. A.2015 Stochastic and nonlinear forcing of wavepackets in a Mach 0.9 jet. AIAA Paper 2015-2217.CrossRefGoogle Scholar
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar