Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T15:51:58.238Z Has data issue: false hasContentIssue false

Bridging local to global dynamics of drop impact onto solid substrates

Published online by Cambridge University Press:  14 April 2014

H. Lastakowski
Affiliation:
Institut Lumière Matière, University Lyon 1 – CNRS, UMR 5306, Université de Lyon, 69622 Villeurbanne CEDEX, France
F. Boyer
Affiliation:
Institut Lumière Matière, University Lyon 1 – CNRS, UMR 5306, Université de Lyon, 69622 Villeurbanne CEDEX, France
A.-L. Biance*
Affiliation:
Institut Lumière Matière, University Lyon 1 – CNRS, UMR 5306, Université de Lyon, 69622 Villeurbanne CEDEX, France
C. Pirat
Affiliation:
Institut Lumière Matière, University Lyon 1 – CNRS, UMR 5306, Université de Lyon, 69622 Villeurbanne CEDEX, France
C. Ybert
Affiliation:
Institut Lumière Matière, University Lyon 1 – CNRS, UMR 5306, Université de Lyon, 69622 Villeurbanne CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

The shape of impacting drops onto a solid surface is investigated by probing the local flow velocity and the local thickness profile of the spreading lamella during the drop impact. First, as a model situation of no viscous coupling between the liquid and the substrate, the impact of a drop onto hot plates, above the Leidenfrost temperature, is considered. In this case, we demonstrate that the velocity and thickness profiles are in good agreement with inviscid convective flow theory. This local description allows us to revisit the modelling of well-studied global behaviour such as drop spreading. Building from this idealized situation, viscous boundary-layer effects emerging from frictional coupling on a cold surface are then captured.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakshi, S., Roisman, I. V. & Tropea, C. 2007 Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19 (3), 032102.CrossRefGoogle Scholar
Biance, A. L., Chevy, F., Clanet, C., Lagubeau, G. & Quere, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.Google Scholar
Biance, A. L., Clanet, C. & Quere, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321636.Google Scholar
Biance, A. L., Pirat, C. & Ybert, C. 2011 Drop fragmentation due to hole formation during leidenfrost impact. Phys. Fluids 23 (2), 022104.Google Scholar
Bussmann, M., Chandra, S. & Mostaghimi, J. 2000 Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 12, 31213132.Google Scholar
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.Google Scholar
Clanet, C., Beguin, C., Richard, D. & Quere, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Culick, F. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.Google Scholar
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.Google Scholar
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.Google Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
Lagubeau, G., Fontelos, M. A., Josserand, C., Maurel, A., Pagneux, V. & Petitjeans, P. 2012 Spreading dynamics of drop impacts. J. Fluid Mech. 713, 5060.Google Scholar
Latka, A., Strandburg-Peshkin, A., Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2012 Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109, 054501.Google Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.CrossRefGoogle ScholarPubMed
Range, K. & Feuillebois, F. 1998 Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 203, 1630.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quere, D. 2002 Surface phenomena—contact time of a bouncing drop. Nature 417, 811.CrossRefGoogle ScholarPubMed
Rioboo, R., Marengo, M. & Tropea, C. 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112124.Google Scholar
Roisman, I. V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.Google Scholar
Roisman, I. V., Berberovic, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21, 052103.Google Scholar
Roisman, Ilia. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.Google Scholar
Schroll, R. D., Josserand, C., Zaleski, S. & Zhang, W. W. 2010 Impact of a viscous liquid drop. Phys. Rev. Lett. 104, 034504.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. 3. Disintegration of fluid sheets. Proc. R. Soc. A 253, 313321.Google Scholar
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108, 036101.Google Scholar
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.Google Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.Google Scholar
Wachters, L. H. & Westerling, N. A. 1966 Heat transfer from a hot wall to impinging water drops in spheroidal state. Chem. Engng Sci. 21, 10471056.Google Scholar
Willis, K. & Orme, M. 2003 Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Exp. Fluids 34, 2841.Google Scholar
Worthington, A. M. 1876 On the form assumed by drops of liquids falling vertically on horizontal plate. Proc. R. Soc. 25, 261271.Google Scholar
Xu, L. 2007 Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75, 056316.Google Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar