Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-20T11:44:27.189Z Has data issue: false hasContentIssue false

Breakup of electrified jets

Published online by Cambridge University Press:  24 September 2007

ROBERT T. COLLINS
Affiliation:
Department of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
MICHAEL T. HARRIS
Affiliation:
Department of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
OSMAN A. BASARAN
Affiliation:
Department of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

Breakup of electrified jets is important in applications as diverse as electrospraying, electroseparations and electrospray mass spectrometry. Breakup of a perfectly conducting, incompressible Newtonian liquid jet surrounded by a passive insulating gas that is stressed by a radial electric field is studied by a temporal analysis. An initially quiescent jet is subjected to axially periodic shape perturbations and the ensuing dynamics are followed numerically until pinch-off by both a three-dimensional but axisymmetric (two-dimensional) and a one-dimensional slender-jet algorithm. Results computed with these algorithms are verified against predictions from linear theory for short times. Breakup times, ratios of the sizes of the primary to satellite drops formed at pinch-off, and the Coulombic stability of these drops are reported over a wide range of electrical Bond numbers, NE (ratio of electric to surface tension force), Ohnesorge numbers, NOh (ratio of viscous to surface tension force), and disturbance wavenumbers, k. Effect of surface charge on interface overturning is investigated. Furthermore, the influence of electrostatic stresses on the dynamics of pinch-off and the mechanisms of satellite drop formation is also addressed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adornato, P. M. & Brown, R. A. 1983 Shape and stability of electrostatically levitated drops. Proc. R. Soc. Lond. A 389, 101117.Google Scholar
Ambravaneswaran, B. & Basaran, O. A. 1999 Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Phys. Fluids 11 (5), 9971015.CrossRefGoogle Scholar
Ambravaneswaran, B., Wilkes, E. D. & Basaran, O. A. 2002 Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14 (8), 26062621.CrossRefGoogle Scholar
Ashgriz, N. & Mashayek, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163190.CrossRefGoogle Scholar
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 18421848.CrossRefGoogle Scholar
Basaran, O. A. & Scriven, L. E. 1989 Axisymmetric shapes and stability of charged drops in an external electric field. Phys. Fluids A 1, 799809.CrossRefGoogle Scholar
Basset, A. B. 1894 Waves and jets in a viscous liquid. Am. J. Maths 16, 93110.CrossRefGoogle Scholar
Brenan, K. E., Campbell, S. L. & Petzold, L. R. 1996 Numerical Solution of Initial Value Problems in Differential-Algebraic Equations. SIAM.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chaudhary, K. C. & Redekopp, L. G. 1980 Non-linear capillary instability of a liquid jet.1. Theory. J. Fluid Mech. 96, 257274.CrossRefGoogle Scholar
Chen, A. U., Notz, P. K. & Basaran, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88 (17), 4501-14501-4.CrossRefGoogle ScholarPubMed
Chen, Y. J. & Steen, P. H. 1997 Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech. 341, 245267.CrossRefGoogle Scholar
Cherney, L. T. 1999 Electrohydrodynamics of electrified liquid menisci and emitted jets. J. Aerosol Sci. 30, 851862.CrossRefGoogle Scholar
Christodoulou, K. N. & Scriven, L. E. 1992 Discretization of free surface flows and other moving boundary problems. J. Comput. Phys. 99, 3955.CrossRefGoogle Scholar
Cloupeau, M. & Prunet-Foch, B. 1989 Electrostatic spraying of liquids in cone-jet mode. J. Electrostat. 22, 135159.CrossRefGoogle Scholar
Cloupeau, M. & Prunet-Foch, B. 1990 Electrostatic spraying of liquids–main functioning modes. J. Electrostat. 25, 165184.CrossRefGoogle Scholar
Cook, K. D. 1986 Electrohydrodynamics mass-spectrometry. Mass Spectrometry Rev. 5, 467519.CrossRefGoogle Scholar
Day, R. F., Hinch, E. J. & Lister, J. R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80 (4), 704707.CrossRefGoogle Scholar
Doshi, J. & Reneker, D. H. 1995 Electrospinning processes and applications of electrospun fibers. J. Electrostat. 35, 51.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3d axisymmetric free-surface flow. Phys. Rev. Lett. 71 (21), 34583460.CrossRefGoogle ScholarPubMed
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.CrossRefGoogle Scholar
Eggers, J. 2005 Drop formation–an overview. Z. Angew. Math. Mech. 85, 400410.CrossRefGoogle Scholar
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Fenn, J. B., Mann, M., Wong, C. K. & Whitehouse, C. M. 1990 Electrospray ionization–principles and practice. Mass Spectrometry Rev. 9, 3770.CrossRefGoogle Scholar
Gamero-Castaño, M. & Hruby, V. 2002 Electric measurements of charged sprays emitted by cone jets. J. Fluid Mech. 459, 245276.CrossRefGoogle Scholar
Gañan-Cálvo, A. M. 1997 On the theory of electrohydrodynamically driven capillary jets. J. Fluid Mech. 355, 165188.CrossRefGoogle Scholar
Goedde, E. F. & Yuen, M. C. 1970 Experiments on liquid jet instability. J. Fluid. Mech. 40, 495511.CrossRefGoogle Scholar
Gresho, P. M., Lee, R. L. & Sani, R. L. 1980 On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. In Recent Advances in Numerical Methods in Fluids (ed. Taylor, C. & Morgan, K.), vol. 1, chap. 2, pp. 2279. Pineridge.Google Scholar
Harris, M. T., Scott, T. C. & Byers, C. H. 1993 The synthesis of metal hydrous oxide particles by multiphase electrodispersion. Mat. Sci. Engng A 162, 125129.CrossRefGoogle Scholar
Hayati, I., Bailey, A. I. & Tadros, T. F. 1987 a Investigations into the mechanisms of electrohydrodynamic spraying of liquids 1. Effect of electric-field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J. Colloid Interface Sci. 117, 205221.CrossRefGoogle Scholar
Hayati, I., Bailey, A. I. & Tadros, T. F. 1987 b Investigations into the mechanism of electrohydrodynamic spraying of liquids 2. Mechanism of stable jet formation and electrical forces acting on a liquid cone. J. Colloid Interface Sci. 117, 222230.CrossRefGoogle Scholar
Higuera, F. J. 2004 Current/flow-rate characteristic of an electrospray with a small meniscus. J. Fluid Mech. 513, 239246.CrossRefGoogle Scholar
Hohman, M. M., Shin, M., Rutledge, G. & Brenner, M. P. 2001 a Electrospinning and electrically forced jets I. Stability theory. Phys. Fluids 13 (8), 22012220.CrossRefGoogle Scholar
Hohman, M. M., Shin, M., Rutledge, G. & Brenner, M. P. 2001 b Electrospinning and electrically forced jets II. Applications. Phys. Fluids 13 (8), 22212236.CrossRefGoogle Scholar
Hood, P. 1976 Frontal solution program for unsymmetric matrices. Intl. J. Numer. Meth. Engng 10, 379399.CrossRefGoogle Scholar
Huebner, A. L. & Chu, H. N. 1971 Instability and breakup of charged liquid jets. J. Fluid Mech. 49, 361372.CrossRefGoogle Scholar
Huyakorn, P. S., Taylor, C., Lee, R. L. & Gresho, P. M. 1978 Comparison of various mixed-interpolation finite-elements in velocity–pressure formulation of Navier–Stokes equations. Comput. Fluids 6, 2535.CrossRefGoogle Scholar
Jones, A. R. & Thong, K. C. 1971 Production of charged monodisperse fuel droplets by electrical dispersion. J. Phys. D: Appl. Phys. 4, 1159.CrossRefGoogle Scholar
Keller, J. B. & Miksis, M. J. 1983 Surface tension driven flows. SIAM J. Appl. Maths. 43, 268277.CrossRefGoogle Scholar
Kistler, S. F. & Scriven, L. E. 1994 The teapot effect–sheet-forming flows with deflection, wetting, and hysteresis. J. Fluid Mech. 263, 1962.CrossRefGoogle Scholar
Lafrance, P. 1975 Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18 (4), 428432.CrossRefGoogle Scholar
Lee, H. C. 1974 Drop formation in liquid jets. IBM J. Res. Develop. 18, 364369.CrossRefGoogle Scholar
Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 27582764.CrossRefGoogle Scholar
López-Herrera, J. M. & Gañan-Cálvo, A. M. 2004 A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model. J. Fluid Mech. 501, 303326.CrossRefGoogle Scholar
López-Herrera, J. M., Gañan-Cálvo, A. M. & Perez-Saborid, M. 1999 One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to E.H.D. spraying. J. Aerosol Sci. 30, 895912.CrossRefGoogle Scholar
López-Herrera, J. M., Riesco-Chueca, P. & Gañan-Cálvo, A. M. 2005 Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets. Phys. Fluids 17 (034106).CrossRefGoogle Scholar
Luskin, M. & Rannacher, R. 1982 On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19, 93113.CrossRefGoogle Scholar
McGough, P. T. & Basaran, O. A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96 (5), 054502-1054502-4.CrossRefGoogle ScholarPubMed
Mansour, N. N. & Lundgren, T. S. 1990 Satellite formation in capillary jet breakup. Phys. Fluids A 2, 11411144.CrossRefGoogle Scholar
Melcher, J. R. 1963 Field Coupled Surface Waves. MIT Press.Google Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.CrossRefGoogle Scholar
Nayfeh, A. H. 1970 Nonlinear stability of a liquid jet. Phys. Fluids 13 (4), 841.CrossRefGoogle Scholar
Notz, P. K. & Basaran, O. A. 1999 Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213, 218237.CrossRefGoogle ScholarPubMed
Notz, P. K. & Basaran, O. A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.CrossRefGoogle Scholar
Notz, P. K., Chen, A. U. & Basaran, O. A. 2001 Satellite drops: unexpected dynamics and change of scaling during pinch-off. Phys. Fluids 13, 549551.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 On the breakup of viscous-liquid threads. Phys. Fluids 7, 15291544.CrossRefGoogle Scholar
Plateau, J. 1863 Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. In Annual Report of the Board of Regents of the Smithsonian Institution, pp. 270–283. Washington, D.C.Google Scholar
Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.Google Scholar
Rayleigh, Lord 1882 On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14, 184186.CrossRefGoogle Scholar
Rayleigh, Lord 1892 On the instability of a cylinder of viscous liquid under the capillary force. Phil. Mag. 34, 145154.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Fong, H. & Koombhongse, S. 2000 Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 45314547.CrossRefGoogle Scholar
Reznik, S. N., Yarin, A. L., Theron, A. & Zussman, E. 2004 Transient and steady shapes of droplets attached to a surface in a strong electric field. J. Fluid Mech. 516, 349377.CrossRefGoogle Scholar
Rutland, D. F. & Jameson, G. J. 1970 Theoretical prediction of sizes of drops formed in breakup of capillary jet. Chem. Engng Sci. 25, 1689.CrossRefGoogle Scholar
Saville, D. A. 1971 Stability of electrically charged viscous cylinders. Phys. Fluids 14 (6), 10951099.CrossRefGoogle Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.CrossRefGoogle Scholar
Setiawan, E. R. & Heister, S. D. 1997 Nonlinear modeling of an infinite electrified jet. J. Electrostat. 42, 243257.CrossRefGoogle Scholar
Strang, G. & Fix, G. J. 1973 An Analysis of the Finite Element Method. Prentice–Hall.Google Scholar
Sweet, R. G. 1965 High frequency recording with electrostatically deflected ink jets. Rev. Sci. Instrum. 36, 131136.CrossRefGoogle Scholar
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.Google Scholar
Taylor, G. I. 1969 Electrically driven jets. Proc. R. Soc. Lond. A 313, 453475.Google Scholar
Thomas, P. D. & Brown, R. A. 1987 LU decomposition of matrices with augmented dense constraints. Intl. J. Numer. Meth. Engng 24, 14511459.CrossRefGoogle Scholar
Vonnegut, B. & Neubauer, R. L. 1952 Production of monodisperse liquid particles by electrical atomization. J. Colloid Sci. 7, 616622.CrossRefGoogle Scholar
Wilkes, E. D., Phillips, S. D. & Basaran, O. A. 1999 Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11 (12), 35773598.CrossRefGoogle Scholar
Yarin, A. L. 1993 Free Liquid Jets and Films: Hydrodynamics and Rheology. Wiley.Google Scholar
Yarin, A. L., Koombhongse, S. & Reneker, D. H. 2001 Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 30183026.CrossRefGoogle Scholar
Yarin, A. L., Kataphinan, W. & Reneker, D. H. 2005 Branching in electrospinning of nanofibers. J. Appl. Phys. 98, 064501.CrossRefGoogle Scholar
Yildirim, O. E. & Basaran, O. A. 2001 Deformation and breakup of stretching bridges of Newtonian and shear-thinning liquids: comparison of one- and two-dimensional models. Chem. Engng Sci. 56, 211233.CrossRefGoogle Scholar
Yuen, M. C. 1968 Non-linear capillary instability of a liquid jet. J. Fluid. Mech. 33, 151163.CrossRefGoogle Scholar
Zeleny, J. 1917 Instability of electrified liquid surfaces. Phys. Rev. 10, 16.CrossRefGoogle Scholar
Zhang, X. G. & Basaran, O. A. 1996 Dynamics of drop formation from a capillary in the presence of an electric field. J. Fluid. Mech. 326, 239263.CrossRefGoogle Scholar
Zhang, X., Padgett, R. S. & Basaran, O. A. 1996 Nonlinear deformation and breakup of stretching liquid bridges. J. Fluid. Mech. 329, 207245.CrossRefGoogle Scholar