Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-17T17:35:50.326Z Has data issue: false hasContentIssue false

Bounds on energy flux for finite energy turbulence

Published online by Cambridge University Press:  29 March 2006

P. L. Sulem
Affiliation:
Centre National de la Recherche Scientifique, Observatoire de Nice, France
U. Frisch
Affiliation:
Centre National de la Recherche Scientifique, Observatoire de Nice, France

Abstract

For incompressible three-dimensional (two-dimensional) turbulence of finite energy, bounds are obtained on energy (enstrophy) flux. To estimate the nonlinear terms, we use a decomposition of the Fourier space into shells of exponentially increasing radii and the property of boundedness in position space of square-integrable functions with Fourier transforms of compact support. In the limit of zero viscosity, it is shown that the three-dimensional (two-dimensional) energy (enstrophy) inertial range, if it exists, cannot have an energy spectrum steeper than $k^{-\frac{8}{3}} (k^{-4})$. Similar results are obtained for the advection of a passive scalar. The connexion with the problem of homogeneous turbulence and intermittency is briefly discussed.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourguignon, J. P. & Brezis, H. 1974 J. Funct. Anal. 15, 341.
Ebin, D. G. & Marsden, J. E. 1970 Ann. Math. 92, 102.
Foias, C., Frisch, U. & Temam, R. 1975 C. R. Acad. Sci. Paris, A 280, 505.
Howard, L. N. 1972 Ann. Rev. Fluid Mech. 4, 473.
Kato, T. 1972 J. Funct. Anal. 9, 296.
Kolmogorov, A. N. 1941 C. R. Acad. Sci. U.R.S.S. 30, 301.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kraichnan, R. H. 1971 J. Fluid Mech. 47, 525.
Kraichnan, R. H. 1974 J. Fluid Mech. 62, 305.
Kraichnan, R. H. 1975 Adv. in Math. 16, 305.
Ladyzhenskaya, O. A. 1969 The Mathematical Theory of Viscous Incompressible Flow, 2nd English edn. Gordon & Breach.
Lichtenstein, L. 1925 Mathematische Zeitschrift, p. 89. Springer.
Lions, J. L. 1969 Quelques Methodes de Resolution des Problèmes aux Limites Non-linéaires. Dunod-Gauthier-Villars.
Mandelbrot, B. B. 1975 Some fractal aspects of turbulence: intermittency, dimension, kurtosis, and the spectral exponent 5/3. B. Proc. Journées Mathématiques sur la Turbulence, Orsay (ed. R. Temam). Springer.
Nelkin, M. 1974 Phys. Rev. A 9, 388.
Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305.
Temam, R. 1975 J. Funct. Anal. 20, 32.