Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T04:40:21.324Z Has data issue: false hasContentIssue false

Boundary layer formulations in orthogonal curvilinear coordinates for flow over wind-generated surface waves

Published online by Cambridge University Press:  06 February 2020

Kianoosh Yousefi*
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE19716, USA School of Marine Science and Policy, University of Delaware, Newark, DE19716, USA
Fabrice Veron
Affiliation:
School of Marine Science and Policy, University of Delaware, Newark, DE19716, USA
*
Email address for correspondence: [email protected]

Abstract

The development of the governing equations for fluid flow in a surface-following coordinate system is essential to investigate the fluid flow near an interface deformed by propagating waves. In this paper, the governing equations of fluid flow, including conservation of mass, momentum and energy balance, are derived in an orthogonal curvilinear coordinate system relevant to surface water waves. All equations are further decomposed to extract mean, wave-induced and turbulent components. The complete transformed equations include explicit extra geometric terms. For example, turbulent stress and production terms include the effects of coordinate curvature on the structure of fluid flow. Furthermore, the governing equations of motion were further simplified by considering the flow over periodic quasi-linear surface waves wherein the wavelength of the disturbance is large compared to the wave amplitude. The quasi-linear analysis is employed to express the boundary layer equations in the orthogonal wave-following curvilinear coordinates with the corresponding decomposed equations for the mean, wave and turbulent fields. Finally, the vorticity equations are also derived in the orthogonal curvilinear coordinates in order to express the corresponding velocity–vorticity formulations. The equations developed in this paper proved to be useful in the analysis and interpretation of experimental data of fluid flow over wind-generated surface waves. Experimental results are presented in a companion paper.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Zanaidi, M. A. & Hui, W. H. 1984 Turbulent airflow over water waves – a numerical study. J. Fluid Mech. 148, 225246.CrossRefGoogle Scholar
Anderson, D. A., Tannehill, J. C. & Pletcher, R. H. 1984 Computational Fluid Mechanics and Heat Transfer, 1st edn. Hemisphere.Google Scholar
Aris, R. 1962 Vectors, Tensors and the Basic Equations of Fluid Dynamics. Dover.Google Scholar
Banner, M. L. 1990 The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech. 211, 463495.CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 1998 Tangential stress beneath wind-driven air–water interfaces. J. Fluid Mech. 364, 115145.CrossRefGoogle Scholar
Barlow, R. S. & Johnston, J. P. 1988 Structure of a turbulent boundary layer on a concave surface. J. Fluid Mech. 191, 137176.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Belcher, S. E. & Hunt, J. C. R. 1993 Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109148.CrossRefGoogle Scholar
Belcher, S. E., Newley, T. M. J. & Hunt, J. C. R. 1993 The drag on an undulating surface induced by the flow of a turbulent boundary layer. J. Fluid Mech. 249, 557596.CrossRefGoogle Scholar
Benjamin, T. B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.CrossRefGoogle Scholar
Blin, L., Hadjadj, A. & Vervisch, L. 2003 Large eddy simulation of turbulent flows in reversing systems. J. Turbul. 4, N1.CrossRefGoogle Scholar
Blumberg, A. F. & Herring, H. J. 1987 Circulation modelling using orthogonal curvilinear coordinates. In Elsevier Oceanography Series, vol. 45, pp. 5588. Elsevier.Google Scholar
Borue, V., Orszag, S. A. & Staroselsky, I. 1995 Interaction of surface waves with turbulence: direct numerical simulations of turbulent open-channel flow. J. Fluid Mech. 286, 123.CrossRefGoogle Scholar
Boyer, F. & Fabrie, P. 2012 Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, vol. 183. Springer.Google Scholar
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177191.CrossRefGoogle Scholar
Bradshaw, P.1973 Effects of streamline curvature on turbulent flow. Tech. Rep. AGARD-AG-169. Advisory Group for Aerospace Research and Development (AGARD), Neuilly Sur Seine, France.Google Scholar
Brown, T. D. & Hung, T.-K. 1977 Computational and experimental investigations of two-dimensional nonlinear peristaltic flows. J. Fluid Mech. 83 (2), 249272.CrossRefGoogle Scholar
Buckley, M. P. & Veron, F. 2016 Structure of the airflow above surface waves. J. Phys. Oceanogr. 46 (5), 13771397.CrossRefGoogle Scholar
Buckley, M. P. & Veron, F. 2017 Airflow measurements at a wavy air–water interface using PIV and LIF. Exp. Fluids 58 (11), 161.CrossRefGoogle Scholar
Buckley, M. P. & Veron, F. 2019 The turbulent airflow over wind generated surface waves. Eur. J. Mech. (B/Fluids) 73, 132143.CrossRefGoogle Scholar
Cebeci, T. & Cousteix, J. 2005 Modeling and Computation of Boundary-Layer Flows, 2nd edn. Springer.Google Scholar
Cebeci, T., Kaups, K. & Moser, A. 1976 Calculation of three-dimensional boundary layers. III-three-dimensional flows in orthogonal curvilinear coordinates. AIAA J. 14 (8), 10901094.CrossRefGoogle Scholar
Chen, H. C., Patel, V. C. & Ju, S. 1990 Solutions of Reynolds-averaged Navier–Stokes equations for three-dimensional incompressible flows. J. Comput. Phys. 88 (2), 305336.CrossRefGoogle Scholar
Cheung, T. K. & Street, R. L. 1988 The turbulent layer in the water at an air–water interface. J. Fluid Mech. 194, 133151.CrossRefGoogle Scholar
Dave, N., Azih, C. & Yaras, M. I. 2013 A DNS study on the effects of convex streamwise curvature on coherent structures in a temporally-developing turbulent boundary layer with supercritical water. Intl J. Heat Fluid Flow 44, 635643.CrossRefGoogle Scholar
Davis, K. A. & Monismith, S. G. 2011 The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr. 41 (11), 22232241.CrossRefGoogle Scholar
Degani, A. T. & Walker, J. D. A. 1993 Computation of attached three-dimensional turbulent boundary layers. J. Comput. Phys. 109 (2), 202214.CrossRefGoogle Scholar
Druzhinin, O. A., Troitskaya, Y. I. & Zilitinkevich, S. S. 2016 Stably stratified airflow over a waved water surface. Part 1: Stationary turbulence regime. Q. J. R. Meteorol. Soc. 142 (695), 759772.CrossRefGoogle Scholar
Einaudi, F. & Finnigan, J. J. 1993 Wave–turbulence dynamics in the stably stratified boundary layer. J. Atmos. Sci. 50 (13), 18411864.2.0.CO;2>CrossRefGoogle Scholar
Einaudi, F., Finnigan, J. J. & Fua, D. 1984 Gravity wave turbulence interaction in the presence of a critical level. J. Atmos. Sci. 41 (4), 661667.2.0.CO;2>CrossRefGoogle Scholar
Elfouhaily, T., Chapron, B., Katsaros, K. & Vandemark, D. 1997 A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 102 (C7), 1578115796.CrossRefGoogle Scholar
Finnigan, J. J. 1983 A streamline coordinate system for distorted two-dimensional shear flows. J. Fluid Mech. 130, 241258.CrossRefGoogle Scholar
Finnigan, J. J. 2004 A re-evaluation of long-term flux measurement techniques. Part II: coordinate systems. Boundary-Layer Meteorol. 113 (1), 141.CrossRefGoogle Scholar
Finnigan, J. J. & Einaudi, F. 1981 The interaction between an internal gravity wave and the planetary boundary layer. Part II: Effect of the wave on the turbulence structure. Q. J. R. Meteorol. Soc. 107 (454), 807832.CrossRefGoogle Scholar
Gent, P. R. & Taylor, P. A. 1976 A numerical model of the air flow above water waves. J. Fluid Mech. 77, 105128.CrossRefGoogle Scholar
Grare, L., Peirson, W. L., Branger, H., Walker, J. W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.CrossRefGoogle Scholar
Hall, P. & Horseman, N. J. 1991 The linear inviscid secondary instability of longitudinal vortex structures in boundary layers. J. Fluid Mech. 232, 357375.CrossRefGoogle Scholar
Hao, X. & Shen, L. 2019 Wind–wave coupling study using les of wind and phase-resolved simulation of nonlinear waves. J. Fluid Mech. 874, 391425.CrossRefGoogle Scholar
Hara, T. & Belcher, S. E. 2004 Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr. 34 (11), 23452358.CrossRefGoogle Scholar
Hara, T. & Sullivan, P. P. 2015 Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr. 45 (3), 868883.CrossRefGoogle Scholar
Hoffmann, P. H., Muck, K. C. & Bradshaw, P. 1985 The effect of concave surface curvature on turbulent boundary layers. J. Fluid Mech. 161, 371403.CrossRefGoogle Scholar
Holloway, A. G. L., Roach, D. C. & Akbary, H. 2005 Combined effects of favourable pressure gradient and streamline curvature on uniformly sheared turbulence. J. Fluid Mech. 526, 303336.CrossRefGoogle Scholar
Holloway, A. G. L. & Tavoularis, S. 1992 The effects of curvature on sheared turbulence. J. Fluid Mech. 237, 569603.CrossRefGoogle Scholar
Holloway, A. G. L. & Tavoularis, S. 1998 A geometric explanation of the effects of mild streamline curvature on the turbulence anisotropy. Phys. Fluids 10 (7), 17331741.CrossRefGoogle Scholar
Hsu, C.-T. & Hsu, E. Y. 1983 On the structure of turbulent flow over a progressive water wave: theory and experiment in a transformed wave-following coordinate system. Part 2. J. Fluid Mech. 131, 123153.CrossRefGoogle Scholar
Hsu, C.-T., Hsu, E. Y. & Street, R. L. 1981 On the structure of turbulent flow over a progressive water wave: theory and experiment in a transformed, wave-following co-ordinate system. J. Fluid Mech. 105, 87117.CrossRefGoogle Scholar
Hung, T.-K. & Brown, T. D. 1977 An implicit finite-difference method for solving the Navier–Stokes equation using orthogonal curvilinear coordinates. J. Comput. Phys. 23 (4), 343363.CrossRefGoogle Scholar
Husain, N. T., Hara, T., Buckley, M. P., Yousefi, K., Veron, F. & Sullivan, P. P. 2019 Boundary layer turbulence over surface waves in a strongly forced condition: LES and observation. J. Phys. Oceanogr. 49 (8), 19972015.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1972 The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results. J. Fluid Mech. 54, 241261.CrossRefGoogle Scholar
Iafrati, A., De Vita, F. & Verzicco, R. 2019 Effects of the wind on the breaking of modulated wave trains. Eur. J. Mech. (B/Fluids) 73, 623.CrossRefGoogle Scholar
Janssen, P. A. 1989 Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19 (6), 745754.2.0.CO;2>CrossRefGoogle Scholar
Kantha, L. H. & Rosati, A. 1990 The effect of curvature on turbulence in stratified fluids. J. Geophys. Res. 95 (C11), 2031320330.CrossRefGoogle Scholar
Kim, N. & Rhode, D. L. 2000 Streamwise curvature effect on the incompressible turbulent mean velocity over curved surfaces. Trans. ASME J. Fluids Engng 122 (3), 547551.CrossRefGoogle Scholar
Kundu, P. K. & Cohen, I. M. 2002 Fluid Mechanics, 2nd edn. Academic Press.Google Scholar
Longuet-Higgins, M. S. 1969 Action of a variable stress at the surface of water waves. Phys. Fluids 12 (4), 737740.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1998 Vorticity and curvature at a free surface. J. Fluid Mech. 356, 149153.CrossRefGoogle Scholar
Lumley, J. L. & Terray, E. A. 1983 Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr. 13 (11), 20002007.2.0.CO;2>CrossRefGoogle Scholar
Makin, V. K. & Kudryavtsev, V. N. 1999 Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J. Geophys. Res. 104 (C4), 76137623.CrossRefGoogle Scholar
Makin, V. K. & Kudryavtsev, V. N. 2002 Impact of dominant waves on sea drag. Boundary-Layer Meteorol. 103 (1), 8399.CrossRefGoogle Scholar
Makin, V. K., Kudryavtsev, V. N. & Mastenbroek, C. 1995 Drag of the sea surface. Boundary-Layer Meteorol. 73 (1-2), 159182.CrossRefGoogle Scholar
Makin, V. K. & Mastenbroek, C. 1996 Impact of waves on air–sea exchange of sensible heat and momentum. Boundary-Layer Meteorol. 79 (3), 279300.CrossRefGoogle Scholar
Mastenbroek, C., Makin, V. K., Garat, M. H. & Giovanangeli, J. P. 1996 Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech. 318, 273302.CrossRefGoogle Scholar
Moser, R. D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.CrossRefGoogle Scholar
Mueller, J. A. & Veron, F. 2009 Nonlinear formulation of the bulk surface stress over breaking waves: feedback mechanisms from air-flow separation. Boundary-Layer Meteorol. 130 (1), 117134.CrossRefGoogle Scholar
Náraigh, L. Ó., Spelt, P. D. M. & Zaki, T. A. 2011 Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling. J. Fluid Mech. 683, 357394.CrossRefGoogle Scholar
Nash, J. F. & Patel, V. C. 1972 Three-Dimensional Turbulent Boundary Layers. Scientific and Business Consultants Inc.Google Scholar
Neves, J. C., Moin, P. & Moser, R. D. 1994 Effects of convex transverse curvature on wall-bounded turbulence. Part 1. The velocity and vorticity. J. Fluid Mech. 272, 349382.CrossRefGoogle Scholar
Nikitin, N. 2006 Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates. J. Comput. Phys. 217 (2), 759781.CrossRefGoogle Scholar
Nikitin, N. 2011 Four-dimensional turbulence in a plane channel. J. Fluid Mech. 680, 6779.CrossRefGoogle Scholar
Nikitin, N., Wang, H. & Chernyshenko, S. 2009 Turbulent flow and heat transfer in eccentric annulus. J. Fluid Mech. 638, 95116.CrossRefGoogle Scholar
Raithby, G. D., Galpin, P. F. & Van Doormaal, J. P. 1986 Prediction of heat and fluid flow in complex geometries using general orthogonal coordinates. Numer. Heat Transfer A 9 (2), 125142.Google Scholar
Ramaprian, B. R. & Shivaprasad, B. G. 1978 The structure of turbulent boundary layers along mildly curved surfaces. J. Fluid Mech. 85 (2), 273303.CrossRefGoogle Scholar
Ramaprian, B. R. & Shivaprasad, B. G. 1982 The instantaneous structure of mildly curved turbulent boundary layers. J. Fluid Mech. 115, 3958.CrossRefGoogle Scholar
Redzic, D. V. 2001 The operator 𝛻 in orthogonal curvilinear coordinates. Eur. J. Phys. 22 (6), 595.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Richmond, M. C., Chen, H. C. & Patel, V. C.1986 Equations of laminar and turbulent flows in general curvilinear coordinates. Tech. Rep. No. IIHR-300. Iowa Institute of Hydraulic Research, Iowa, USA.Google Scholar
Rutgersson, A. & Sullivan, P. P. 2005 The effect of idealized water waves on the turbulence structure and kinetic energy budgets in the overlying airflow. Dyn. Atmos. Oceans 38 (3-4), 147171.CrossRefGoogle Scholar
Shen, L., Lu, C., Wu, W. & Xue, S. 2015 A high-order numerical method to study three-dimensional hydrodynamics in a natural river. Adv. Appl. Maths Mech. 7 (2), 180195.CrossRefGoogle Scholar
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, M. S. 2003 Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197221.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. & Sisoev, G. M. 2017 Spiralling liquid jets: verifiable mathematical framework, trajectories and peristaltic waves. J. Fluid Mech. 819, 352400.CrossRefGoogle Scholar
Shyu, J.-H. & Phillips, O. M. 1990 The blockage of gravity and capillary waves by longer waves and currents. J. Fluid Mech. 217, 115141.CrossRefGoogle Scholar
So, R. M. C. 1975 A turbulence velocity scale for curved shear flows. J. Fluid Mech. 70 (1), 3757.CrossRefGoogle Scholar
So, R. M. C. & Mellor, G. L. 1973 Experiment on convex curvature effects in turbulent boundary layers. J. Fluid Mech. 60, 4362.CrossRefGoogle Scholar
Sullivan, P. P., Banner, M. L., Morison, R. P. & Peirson, W. L. 2018 Turbulent flow over steep steady and unsteady waves under strong wind forcing. J. Phys. Oceanogr. 48 (1), 327.CrossRefGoogle Scholar
Sullivan, P. P., Edson, J. B., Hristov, T. & McWilliams, J. C. 2008 Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci. 65 (4), 12251245.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 2000 Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 4785.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Patton, E. G. 2014 Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci. 71 (11), 40014027.CrossRefGoogle Scholar
Takeuchi, K., Leavitt, E. & Chao, S. P. 1977 Effects of water waves on the structure of turbulent shear flow. J. Fluid Mech. 80, 535559.CrossRefGoogle Scholar
Thais, L. & Magnaudet, J. 1995 A triple decomposition of the fluctuating motion below laboratory wind water waves. J. Geophys. Res. 100 (C1), 741755.CrossRefGoogle Scholar
Townsend, A. A. 1972 Flow in a deep turbulent boundary layer over a surface distorted by water waves. J. Fluid Mech. 55 (4), 719735.CrossRefGoogle Scholar
Tsai, W.-T., Chen, S.-M. & Lu, G.-H. 2015 Numerical evidence of turbulence generated by nonbreaking surface waves. J. Phys. Oceanogr. 45 (1), 174180.CrossRefGoogle Scholar
Tseluiko, D. & Kalliadasis, S. 2011 Nonlinear waves in counter-current gas–liquid film flow. J. Fluid Mech. 673, 1959.CrossRefGoogle Scholar
Veron, F., Saxena, G. & Misra, S. K. 2007 Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett. 34 (19), L19603.CrossRefGoogle Scholar
Vinokur, M. 1974 Conservation equations of gasdynamics in curvilinear coordinate systems. J. Comput. Phys. 14 (2), 105125.CrossRefGoogle Scholar
Xuan, A., Deng, B.-Q. & Shen, L. 2019 Study of wave effect on vorticity in Langmuir turbulence using wave-phase-resolved large-eddy simulation. J. Fluid Mech. 875, 173224.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2017 Direct numerical simulation of scalar transport in turbulent flows over progressive surface waves. J. Fluid Mech. 819, 58103.CrossRefGoogle Scholar
Yang, D. I. & Shen, L. 2010 Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech. 650, 131180.CrossRefGoogle Scholar
Yang, Z., Deng, B.-Q. & Shen, L. 2018 Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech. 850, 120155.CrossRefGoogle Scholar
Yousefi, K., Veron, F. & Buckley, M. P. 2020 Momentum flux measurements in the airflow over wind-generated surface waves. J. Fluid Mech. (submitted).Google Scholar
Zhao, D. & Toba, Y. 2001 Dependence of whitecap coverage on wind and wind–wave properties. J. Oceanogr. 57 (5), 603616.CrossRefGoogle Scholar