Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:47:34.818Z Has data issue: false hasContentIssue false

A boundary layer developing in an increasingly adverse pressure gradient

Published online by Cambridge University Press:  29 March 2006

A. E. Samuel
Affiliation:
Department of Mechanical Engineering, University of Melbourne
P. N. Joubert
Affiliation:
Department of Mechanical Engineering, University of Melbourne

Abstract

This paper deals with a survey of mean flow and fluctuating quantities in a turbulent boundary layer developing on a smooth wall in a pressure domain P(x), where both dP/dx and d2P/dx2 are positive (increasingly adverse). The two-dimensional nature of the flow field was checked by momentum balance, as well as velocity traverses either side of the working section centre-line. Using the integrated form of the momentum integral equation, it was found that the skinfriction term and the summed momentum and pressure terms differed by at most 19%; but for the majority of measuring points they differed by less than 14%. The off-centre-line velocity profiles were indistinguishable from those taken on the centre-line. The flow field was also surveyed for fluctuating components $(\overline{u^2_1})^{\frac{1}{2}}, (\overline{u^2_2})^{\frac{1}{2}}, (\overline{u^2_3})^{\frac{1}{2}}$, and $\overline{u_1u_2}$, as well as for u1 spectra. Wherever possible, the results were compared with existing models of boundary-layer development. These comparisons indicated that the only all-embracing model for boundary-layer development is the law of the wall.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, I. H. & Von Doenhoff, A. E. 1949 Theory of Wing Sections. McGraw-Hill.
Bradshaw, P. 1965 NPL Aero. Rep. no. 1171.
Brown, K. C. 1971 Ph.D. thesis, University of Melbourne.
Brown, K. C. & Joubert, P. N. 1969 J. Fluid Mech. 35, 737.
Cebeci, T. & Smith, A. M. O. 1968 McDonnel-Douglas Rep. DAC-67130.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
Coles, D. 1955 50 Jahre Grenzschichtforschung (ed. H. Gortler and W. Tollmien), p. 153. Braunschweig: Vieweg.
Coles, D. & Hirst, E. (ed.) 1968 AFOSR-IFP-Stanford Conf. vol. 2.
Goldstein, S. (ed.) 1965 Modern Developments in Fluid Dynamics, vol. 2. Dover.
Holt, B. W. 1969 M. Eng. Sci. thesis, University of Melbourne.
Johnston, J. P. 1957 M.I.T. Gas Turbine Lab. Rep. no. 39.
Johnston, J. P. 1960 Trans. A.S.M.E. D, 82, 622.
Klebanoff, P. S. 1954 N.A.C.A. Rep. no. 3178.
Klebanoff, P. S. 1955 N.A.C.A. Rep. no. 1247.
Klebanoff, P. S. & Diehl, Z. W. 1952 N.A.C.A. Rep. no. 1110.
Kline, S. J., Morkovin, M. V., Sovran, G. & Cockrell, D. J. (ed.) 1968 AFOSR-IFP-Stanford Conf. vol. 1.
Mcmillan, F. A. 1956 Aero. Res. Counc. R. & M. no. 3028.
Morrison, G. L., Perry, A. E. & Samuel, A. E. 1972 J. Fluid Mech. 52, 465.
Moses, H. L. 1964 MIT Gas Turbine Lab. Rep. no. 73.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Perry, A. E. 1966 J. Fluid Mech. 26, 481.
Perry, A. E., Bell, J. B. & Joubert, P. N. 1966 J. Fluid Mech. 25, 299.
Perry, A. E. & Morrison, G. L. 1971a J. Fluid Mech. 47, 577.
Perry, A. E. & Morrison, G. L. 1971b J. Fluid Mech. 47, 765.
Perry, A. E. & Morrison, G. L. 1971c J. Fluid Mech. 50, 815.
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 J. Fluid Mech. 37, 383.
Samuel, A. E. 1973 Ph.D. thesis, University of Melbourne.
Sandborn, V. A. & Slogar, R. J. 1955 N.A.C.A. Tech. Note, no. 3264.
Schofield, W. H. 1969 Ph.D. thesis, University of Melbourne.
Stratford, B. S. 1959a J. Fluid Mech. 5, 1.
Stratford, B. S. 1959b J. Fluid Mech. 5, 17.
Townsend, A. A. 1961 J. Fluid Mech. 11, 97.
Van Driest, E. R. 1956 J. Aero Sci. 23, 1007.
Young, A. D. & Maas, J. N. 1936 Aero. Res. Counc. R. & M. no. 1770.