Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T18:52:29.026Z Has data issue: false hasContentIssue false

Boundary control in computational haemodynamics

Published online by Cambridge University Press:  21 May 2018

Taha S. Koltukluoğlu*
Affiliation:
Seminar for Applied Mathematics, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
Pablo J. Blanco
Affiliation:
National Laboratory for Scientific Computing, (LNCC/MCTIC), 25651-075 Petrópolis, Brazil
*
Email addresses for correspondence: [email protected], [email protected]

Abstract

In this work, a data assimilation method is proposed following an optimise-then-discretise approach, and is applied in the context of computational haemodynamics. The methodology aims to make use of phase-contrast magnetic resonance imaging to perform optimal flow control in computational fluid dynamic simulations. Flow matching between observations and model predictions is performed in luminal regions, excluding near-wall areas, improving the near-wall flow reconstruction to enhance the estimation of related quantities such as wall shear stresses. The proposed approach remarkably improves the flow field at the aortic root and reveals a great potential for predicting clinically relevant haemodynamic phenomenology. This work presents model validation against an analytical solution using the standard 3-D Hagen–Poiseuille flow, and validation with real data involving the flow control problem in a glass replica of a human aorta imaged with a 3T magnetic resonance scanner. In vitro experiments consist of both a numerically generated reference flow solution, which is considered as the ground truth, as well as real flow MRI data obtained from phase-contrast flow acquisitions. The validation against the in vitro flow MRI experiments is performed for different flow regimes and model parameters including different mesh refinements.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertagna, L., D’Elia, M., Perego, M. & Veneziani, A. 2014 Data assimilation in cardiovascular fluid–structure interaction problems: an introduction. In Fluid–Structure Interaction and Biomedical Applications (ed. Bodnár, T., Galdi, G. P. & Nečasová, Š.), pp. 395481. Springer.Google Scholar
Bhatia, H., Norgard, G., Pascucci, V. & Bremer, P. T. 2013 The Helmholtz–Hodge decomposition – a survey. IEEE Trans. Vis. Comput. Graphics 19 (8), 13861404.Google Scholar
Bock, J., Frydrychowicz, A., Lorenz, R., Hirtler, D., Barker, A. J., Johnson, K. M., Arnold, R., Burkhardt, H., Hennig, J. & Markl, M. 2011 In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn. Reson. Med. 66 (4), 10791088.Google Scholar
Bouillot, P., Delattre, B. M., Brina, O., Ouared, R., Farhat, M., Chnafa, C., Steinman, D. A., Lovblad, K. O., Pereira, V. M. & Vargas, M. I. 2018 3D phase contrast MRI: partial volume correction for robust blood flow quantification in small intracranial vessels. Magn. Reson. Med. 79 (1), 129140.CrossRefGoogle ScholarPubMed
Callaghan, F. M. & Grieve, S. M. 2016 Spatial resolution and velocity field improvement of 4D-flow MRI. Magn. Reson. Med. 78 (5), 19591968.Google Scholar
Callaghan, F. M., Kozor, R., Sherrah, A. G., Vallely, M., Celermajer, D., Figtree, G. A. & Grieve, S. M. 2016 Use of multi-velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta. J. Magn. Reson. Imag. 43 (2), 352363.Google Scholar
Campbell, I. C., Ries, J., Dhawan, S. S., Quyyumi, A. A., Taylor, W. R. & Oshinski, J. N. 2012 Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. Trans. ASME J. Biomech. Engng 134 (5), 051001.Google Scholar
Chatzizisis, Y. S., Coskun, A. Ü., Jonas, M., Edelman, E. R., Feldman, C. L. & Stone, P. H. 2007 Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. College Cardiol. 49 (25), 23792393.Google Scholar
Chiu, J.-J. & Chien, S. 2011 Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Phys. Rev. 91 (1), 327387.Google ScholarPubMed
Cibis, M., Jarvis, K., Markl, M., Rose, M., Rigsby, C., Barker, A. J. & Wentzela, J. J. 2015 The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with fontan circulation: evaluation using computational fluid dynamics. J. Biomech. 48 (12), 29842989.Google Scholar
Cito, S., Pallarés, J. & Vernet, A. 2014 Sensitivity analysis of the boundary conditions in simulations of the flow in an aortic coarctation under rest and stress conditions. In Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges: STACOM 2013 (ed. Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M. & Young, A.), Lecture Notes in Computer Science, vol. 8330, pp. 7482. Springer.Google Scholar
Collis, S. S. & Heinkenschloss, M.2002 Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems. Tech. Rep. TR02–01. Department of Computational and Applied Mathematics, Rice University.Google Scholar
Council, National Research 1991 Four-Dimensional Model Assimilation of Data: A Strategy for the Earth System Sciences. The National Academies Press.Google Scholar
D’Elia, M., Mirabella, L., Passerini, T., Perego, M., Piccinelli, M., Vergara, C. & Veneziani, A. 2012a Applications of variational data assimilation in computational hemodynamics. In Modeling of Physiological Flows (ed. Ambrosi, D., Quarteroni, A. & Rozza, G.), vol. 5, pp. 363394. Springer.CrossRefGoogle Scholar
D’Elia, M., Perego, M. & Veneziani, A. 2012b A variational data assimilation procedure for the incompressible Navier–Stokes equations in hemodynamics. J. Sci. Comput. 52 (2), 340359.Google Scholar
D’Elia, M. & Veneziani, A. 2010a Methods for assimilating blood velocity measures in hemodynamics simulations: preliminary results. Proc. Comput. Sci. 1 (1), 12311239.Google Scholar
D’Elia, M. & Veneziani, A. 2010b A data assimilation technique for including noisy measurements of the velocity field into Navier–Stokes simulations. In Proc. of V European Conference on Computational Fluid Dynamics (ed. Pereira, J. C. F. & Sequeira, A.), ECCOMAS CFD.Google Scholar
Denaro, F. M. 2003 On the application of the Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions. Intl J. Numer. Meth. Fluids 3, 4369.Google Scholar
Formaggia, L., Veneziani, A. & Vergara, C. 2008 A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 46 (6), 27692794.CrossRefGoogle Scholar
Formaggia, L., Veneziani, A. & Vergara, C. 2010 Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Meth. Appl. Mech. Engng 199 (9–12), 677688.CrossRefGoogle Scholar
Fursikov, A. V., Gunzburger, M. D. & Hou, L. S. 1998 Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (3), 852894.CrossRefGoogle Scholar
Garcia, D. 2011 A fast all-in-one method for automated post-processing of PIV data. Exp. Fluids 50 (5), 12471259.CrossRefGoogle ScholarPubMed
Gessner, F. B. 1973 Brief reviews: hemodynamic theories of atherogenesis. Circ. Res. 33 (3), 259266.CrossRefGoogle Scholar
Gudbjartsson, H. & Patz, S. 1995 The Rician distribution of noisy MRI data. Magn. Reson. Med. 34 (6), 910914.Google Scholar
Guerra, T., Sequeira, A. & Tiago, J. 2015 Existence of optimal boundary control for the Navier–Stokes equations with mixed boundary conditions. Port. Math. 72, 267283.Google Scholar
Guerra, T., Tiago, J. & Sequeira, A. 2014 Optimal control in blood flow simulations. Intl J. Non-Linear Mech. 64, 5769.Google Scholar
Gunzburger, M. D. & Manservisi, S. 2000 The velocity tracking problem for Navier–Stokes flows with boundary control. SIAM J. Control Optim. 39 (2), 594634.CrossRefGoogle Scholar
Hardman, D., Semple, S. I., Richards, J. M. & Hoskins, P. R. 2013 Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease. Intl J. Numer. Meth. Biomed. Engng 29 (2), 165178.Google Scholar
Harouna, S. K. & Perrier, V. 2012 Helmholtz–Hodge decomposition on [0, 1] d by divergence-free and curl-free wavelets. In Curves and Surfaces: 7th International Conference, Avignon, France, June 24–30, 2010, Revised Selected Papers (ed. Boissonnat, J. D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M. L. & Schumaker, L.), pp. 311329. Springer.Google Scholar
Hochareon, P., Manning, K. B., Fontaine, A. A., Tarbell, J. M. & Deutsch, S. 2004 Wall shear-rate estimation within the 50cc Penn State artificial heart using particle image velocimetry. Trans. ASME J. Biomech. Engng 126 (4), 430437.Google Scholar
Ide, K., Courtier, P., Ghil, M. & Lorenc, A. C. 1997 Unified notation for data assimilation: operational, sequential and variational. J. Met. Soc. Japan 75 (1B), 181189.Google Scholar
Johnson, H. J., Mccormick, M., Ibáñez, L. & Consortium, The Insight Software 2013 The ITK Software Guide, 3rd edn. Kitware Inc.Google Scholar
Katritsis, D., Kaiktsis, L., Chaniotis, A., Pantos, J., Efstathopoulos, E. P. & Marmarelis, V. 2007 Wall shear stress: theoretical considerations and methods of measurement. Prog. Cardiovascu. Dis. 49 (5), 307329.Google Scholar
Kolipaka, A., Illapani, V. S. P., Kalra, P., Garcia, J., Mo, X., Markl, M. & White, R. D. 2016 Quantification and comparison of 4D-flow MRI-derived wall shear stress and MRE-derived wall stiffness of the abdominal aorta. J. Magn. Reson. Imag. 45 (3), 771778.CrossRefGoogle ScholarPubMed
Ku, D. N., Giddens, D. P., Zarins, C. K. & Glagov, S. 1985 Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5 (3), 293302.Google Scholar
Larsson, D., Spuhler, J. H., Petersson, S., Nordenfur, T., Colarieti-Tosti, M., Hoffman, J., Winter, R. & Larsson, M. 2017 Patient-specific left ventricular flow simulations from transthoracic echocardiography: robustness evaluation and validation against ultrasound Doppler and magnetic resonance imaging. IEEE Trans. Med. Imag. 36 (11), 22612275.CrossRefGoogle ScholarPubMed
Lee, H. 2011 Optimal control for quasi-Newtonian flows with defective boundary conditions. Comput. Meth. Appl. Mech. Engng 200 (33–36), 24982506.Google Scholar
Malek, A. M., Alper, S. L. & Izumo, S. 1999 Hemodynamic shear stress and its role in atherosclerosis. Am. Med. Assoc. 282 (21), 20352042.Google Scholar
Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M. & Wieben, O. 2012 4D flow MRI. Magn. Reson. Imag. 36 (5), 10151036.Google Scholar
Morbiducci, U., Ponzini, R., Gallo, D., Bignardi, C. & Rizzo, G. 2013 Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46 (1), 102109.CrossRefGoogle ScholarPubMed
Patankar, S. V. & Spalding, D. B. 1972 A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. J. Heat Mass Transfer 15, 17871806.CrossRefGoogle Scholar
Pelc, N. J., Herfkens, R. J., Shimakawa, A. & Enzmann, D. R. 1991 Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 7 (4), 229254.Google Scholar
Pirola, S., Cheng, Z., Jarral, O. A., O’Regan, D. P., Pepper, J. R., Athanasiou, T. & Xu, X. Y. 2017 On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J. Biomech. 60, 1521.Google Scholar
Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Post-processing of PIV data. In Particle Image Velocimetry: A Practical Guide, pp. 177208. Springer.Google Scholar
Reneman, R. S., Arts, T. & Hoeks, A. P. G. 2006 Wall shear stress – an important determinant of endothelial cell function and structure – in the arterial system in vivo. Discrepancies with theory. J. Vascu. Res. 43 (3), 251269.Google Scholar
Schmitter, S., Schnell, S., Uğurbil, K., Markl, M. & de Moortele, P. F. Van 2016 Towards high-resolution 4D flow MRI in the human aorta using kt-grappa and b1+ shimming at 7 tesla. J. Magn. Reson. Imag. 44 (2), 486499.Google Scholar
Shaaban, A. M. & Duerinckx, A. J. 2000 Wall shear stress and early atherosclerosis: a review. Am. J. Roentgenol. 174 (6), 16571665.CrossRefGoogle ScholarPubMed
Texon, M., Imparato, A. M. & Helpern, M. 1965 The role of vascular dynamics in the development of atherosclerosis. Am. Med. Assoc. 194 (11), 12261230.Google Scholar
Thang, C., Blatter, D. D. & Parker, D. L. 1995 Correction of partial-volume effects in phase-contrast flow measurements. J. Magn. Reson. Imag. 5 (2), 175180.Google Scholar
Tiago, J., Guerra, T. & Sequeira, A. 2016 A velocity tracking approach for the data assimilation problem in blood flow simulations. Intl J. Numer. Meth. Biomed. Engng. 30 (10).Google Scholar
de Vecchi, A., Gomez, A., Pushparajah, K., Schaeffter, T., Simpson, J. M., Razavi, R., Penney, G. P., Smith, N. P. & Nordsletten, D. A. 2016 A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data. Comput. Med. Imaging Graph. 51, 2031.Google Scholar
Vorp, D. A. & Geest, J. P. Vande 2005 Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vascu. Biol. 25 (8), 15581566.Google Scholar
Vorp, D. A., Raghavan, M. L., Muluk, S. C., Makaroun, M. S., Steed, D. L., Shapiro, R. & Webster, M. W. 1996 Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta. Ann. N.Y. Acad. Sci. 800, 274276.CrossRefGoogle ScholarPubMed
Walpola, P. L., Gotlieb, A. I. & Langille, B. L. 1993 Monocyte adhesion and changes in endothelial cell number, morphology, and f-actin distribution elicited by low shear stress in vivo . Am. J. Pathol. 142 (5), 13921400.Google ScholarPubMed
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.Google Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.CrossRefGoogle Scholar
Yoshida, Y., Sue, W., Okano, M., Oyama, T., Yamane, T. & Mitsumata, M. 1990 The effects of augmented hemodynamic forces on the progression and topography of atherosclerotic plaques. Ann. N.Y. Acad. Sci. 598, 256273.Google Scholar
Zand, T., Majno, G., Nunnari, J. J., Hoffman, A. H., Savilonis, B. J., Macwilliams, B. & Joris, I. 1991 Lipid deposition and intimal stress and strain. A study in rats with aortic stenosis. Am. J. Pathol. 139 (1), 101113.Google Scholar
Zarins, C. K., Zatina, M. A., Giddens, D. P., Ku, D. N. & Glagov, S. 1987 Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vascu. Surg. 5 (3), 413420.Google Scholar