Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T23:17:05.894Z Has data issue: false hasContentIssue false

The bottleneck effect and the Kolmogorov constant in isotropic turbulence

Published online by Cambridge University Press:  10 June 2010

D. A. DONZIS*
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
K. R. SREENIVASAN
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA Department of Physics and the Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

A large database from direct numerical simulations of isotropic turbulence, including recent simulations for box sizes up to 40963 and the Taylor–Reynolds number Rλ ≈ 1000, is used to investigate the bottleneck effect in the three-dimensional energy spectrum and second-order structure functions, and to determine the Kolmogorov constant, CK. The difficulties in estimating CK at any finite Reynolds number, introduced by intermittency and the bottleneck, are assessed. The data conclusively show that the bottleneck effect decreases with the Reynolds number. On this basis, an alternative to the usual procedure for determining CK is suggested; this proposal does not depend on the particular choices of fitting ranges or power-law behaviour in the inertial range. Within the resolution of the numerical data, CK thus determined is a Reynolds-number-independent constant of ≈1.58 in the three-dimensional spectrum. A simple model including non-local transfer is proposed to reproduce the observed scaling features of the bottleneck.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aivalis, K. G., Sreenivasan, K. R., Tsuji, Y., Klewicki, J. C. & Biltoft, C. A. 2002 Temperature structure functions for air flow over moderately heated ground. Phys. Fluids 14, 24392446.CrossRefGoogle Scholar
Aoyama, T., Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Un, A. 2005 Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box. J. Phys. Soc. Japan 74, 32023212.CrossRefGoogle Scholar
Bailey, S. C. C., Hultmark, M., Schumacher, J., Yakhot, V. & Smits, A. J. 2009 Measurement of local dissipation scales in turbulent pipe flow. Phys. Rev. Lett. 103, 014502.CrossRefGoogle ScholarPubMed
Barenblatt, G. I. & Goldenfeld, N. 1995 Does fully developed turbulence exist? Reynolds number independence versus asymptotic covariance. Phys. Fluids 7, 30783082.CrossRefGoogle Scholar
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc. 47, 359374.CrossRefGoogle Scholar
Benzi, R., Ciliberto, S., Baudet, C., Chavarria, G. R. & Tripiccione, R. 1993 Extended self-similarity in the dissipation range of fully-developed turbulence. Europhys. Lett. 24 (4), 275279.CrossRefGoogle Scholar
Bershadskii, A. 2008 Near-dissipation range in nonlocal turbulence. Phys. Fluids 20 (8), 085103.CrossRefGoogle Scholar
Cerutti, S. & Meneveau, C. 2000 Statistics of filtered velocity in grid and wake turbulence. Phys. Fluids 12 (5), 11431165.CrossRefGoogle Scholar
Chen, S. Y., Dhruva, B., Kurien, S., Sreenivasan, K. R. & Taylor, M. A. 2005 Anomalous scaling of low-order structure functions of turbulent velocity. J. Fluid Mech. 533, 183192.CrossRefGoogle Scholar
Chevillard, L., Castaing, B., Leveque, E. & Arneodo, A. 2006 Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness. Physica D 218 (1), 7782.CrossRefGoogle Scholar
Dhruva, B., Tsuji, Y. & Sreenivasan, K. R. 1997 Transverse structure functions in high-Reynolds-number turbulence. Phys. Rev. E 56 (5), R4928R4930.CrossRefGoogle Scholar
Dobler, W., Haugen, N. E. L., Yousef, T. A. & Brandenburg, A. 2003 Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68 (2), 026304.CrossRefGoogle ScholarPubMed
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.CrossRefGoogle Scholar
Donzis, D. A. & Yeung, P. K. 2009 Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D, doi:10.1016/j.physd.2009.09.024.CrossRefGoogle Scholar
Donzis, D. A., Yeung, P. K. & Pekurovsky, D. 2008 a Turbulence simulations on O(104) processors. In TeraGrid 2008 Conference, Las Vegas, NV, 9–13 June.Google Scholar
Donzis, D. A., Yeung, P. K. & Sreenivasan, K. R. 2008 b Dissipation and enstrophy in isotropic turbulence: scaling and resolution effects in direct numerical simulations. Phys. Fluids 20, 045108.CrossRefGoogle Scholar
Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257278.CrossRefGoogle Scholar
Falkovich, G. 1994 Bottleneck phenomenon in developed turbulence. Phys. Fluids 6, 14111414.CrossRefGoogle Scholar
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S. S., Wirth, A. & Zhu, J.-Z. 2008 Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101 (14), 144501.CrossRefGoogle ScholarPubMed
Gotoh, G., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14 (3), 10651081.CrossRefGoogle Scholar
Kaimal, J. C., Izumi, Y., Wyngaard, J. C. & Cote, R. 1972 Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 417, 563589.Google Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.CrossRefGoogle Scholar
Kang, H. S., Chester, S. & Meneveau, C. 2003 Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129160.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299303.Google Scholar
Kurien, S., Taylor, M. A. & Matsumoto, T. 2004 Cascade time scales for energy and helicity in homogeneous isotropic turbulence. Phys. Rev. E 69 (6), 066313.CrossRefGoogle ScholarPubMed
Lohse, D. 1994 Crossover from high to low-Reynolds-number turbulence. Phys. Rev. Lett. 73 (24), 32233226.CrossRefGoogle ScholarPubMed
Lohse, D. & Müller-Groeling, A. 1995 Bottleneck effects in turbulence-scaling phenomena in r-space versus p-space. Phys. Rev. Lett. 74 (10), 17471750.CrossRefGoogle Scholar
Lohse, D. & Müller-Groeling, A. 1996 Anisotropy and scaling corrections in turbulence. Phys. Rev. E 54 (1), 395405.CrossRefGoogle ScholarPubMed
Martinez, D. O., Chen, S., Doolen, G. D., Kraichnan, R. H., Wang, L. P. & Zhou, Y. 1997 Energy spectrum in the dissipation range of fluid turbulence. J. Plasma Phys. 57, 195201.CrossRefGoogle Scholar
Meneveau, C. 1996 Transition between viscous and inertial-range scaling of turbulence structure functions. Phys. Rev. E 54 (4), 36573663.CrossRefGoogle ScholarPubMed
Meyers, J. & Meneveau, C. 2008 A functional form for the energy spectrum parametrizing bottleneck and intermittency effects. Phys. Fluids 20 (6), 065109.CrossRefGoogle Scholar
Mininni, P. D., Alexakis, A. & Pouquet, A. 2008 Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws. Phys. Rev. E 77, 036306.CrossRefGoogle ScholarPubMed
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high-Peclet-number grid turbulence. J. Fluid Mech. 358, 135175.CrossRefGoogle Scholar
Nelkin, M. 1990 Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42, 72267229.CrossRefGoogle ScholarPubMed
Obukhov, A. M. 1941 On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk. SSSR 32, 2224.Google Scholar
Praskovsky, A. & Oncley, S. 1994 Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6 (9), 28862888.CrossRefGoogle Scholar
Praskovsky, A. & Oncley, S. 1997 Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows. Fluid Dyn. Res. 21 (5), 331358.CrossRefGoogle Scholar
Qian, J. 1984 Universal equilibrium range of turbulence. Phys. Fluids 27, 22292233.CrossRefGoogle Scholar
She, Z.-S. & Jackson, E. 1993 On the universal form of energy spectra in fully developed turbulence. Phys. Fluids 5, 15261528.CrossRefGoogle Scholar
Sirovich, L., Smith, L. & Yakhot, V. 1994 Energy-spectrum of homogeneous and isotropic turbulence in far dissipation range. Phys. Rev. Lett. 72 (3), 344347.CrossRefGoogle ScholarPubMed
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.CrossRefGoogle Scholar
Sreenivasan, K. R. & Dhruva, B. 1998 Is there scaling in high-Reynolds-number turbulence? Prog. Theor. Phys. Suppl. 130, 103120.CrossRefGoogle Scholar
Sreenivasan, K. R. & Kailasnath, P. 1993 An update on the intermittency exponent in turbulence. Phys. Fluids 5 (2), 512514.CrossRefGoogle Scholar
Stolovitzky, G., Sreenivasan, K. R. & Juneja, A. 1993 Scaling functions and scaling exponents in turbulence. Phys. Rev. E 48 (5), R3217R3220.CrossRefGoogle ScholarPubMed
Tsuji, Y. 2004 Intermittency effect on energy spectrum in high-Reynolds number turbulence. Phys. Fluids 16 (5), L43L46.CrossRefGoogle Scholar
Verma, M. K. & Donzis, D. A. 2007 Energy transfer and bottleneck effect in turbulence. J. Phys. A 40 (16), 44014412.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117146.CrossRefGoogle Scholar
Welter, G. S., Wittwer, A. R., Degrazia, G. A., Acevedo, O. C., Leal de Moraes, O. L. & Anfossi, D. 2009 Measurements of the Kolmogorov constant from laboratory and geophysical wind data. PhysicaA 388 (18), 37453751.CrossRefGoogle Scholar
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823841.CrossRefGoogle Scholar
Yakhot, V. & Zakharov, V. 1993 Hidden conservation-laws in hydrodynamics energy and dissipation rate fluctuation spectra in strong turbulence. Physica D 64 (4), 379394.CrossRefGoogle Scholar
Yeung, P. K. & Zhou, Y. 1997 Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E 56, 17461752.CrossRefGoogle Scholar