Hostname: page-component-599cfd5f84-jhfc5 Total loading time: 0 Render date: 2025-01-07T07:55:00.890Z Has data issue: false hasContentIssue false

Bluff body drag manipulation using pulsed jets and Coanda effect

Published online by Cambridge University Press:  20 September 2016

Diogo Barros*
Affiliation:
Institut Pprime, UPR-3346 CNRS - Université de Poitiers - ENSMA, Futuroscope Chasseneuil, 86360, France PSA Peugeot-Citroën, Centre Technique de Vélizy, Vélizy-Villacoublay, 78943, France
Jacques Borée
Affiliation:
Institut Pprime, UPR-3346 CNRS - Université de Poitiers - ENSMA, Futuroscope Chasseneuil, 86360, France
Bernd R. Noack
Affiliation:
LIMSI-CNRS, UPR 3251, Campus Universitare d’Orsay, Rue John Von Neumann, Bât 508, F-91405 Orsay CEDEX, France Institut für Strömungsmechanik, Technische Universität Braunschweig, Hermann-Blenck-Straße 37, D-38108 Braunschweig, Germany
Andreas Spohn
Affiliation:
Institut Pprime, UPR-3346 CNRS - Université de Poitiers - ENSMA, Futuroscope Chasseneuil, 86360, France
Tony Ruiz
Affiliation:
PSA Peugeot-Citroën, Centre Technique de Vélizy, Vélizy-Villacoublay, 78943, France
*
Email address for correspondence: [email protected]

Abstract

The impact of fluidic actuation on the wake and drag of a three-dimensional blunt body is investigated experimentally. Jets blowing tangentially to the main flow force the wake with variable frequency and amplitude. Depending on the forcing conditions, two flow regimes can be distinguished. First, in the case of broadband actuation with frequencies comprising the natural wake time scale, the convection of the jet structures enhances wake entrainment, shortens the length of the recirculating flow and increases drag. Secondly, at higher actuation frequencies, shear-layer deviation leads to fluidic boat tailing of the wake. It additionally lowers its turbulent kinetic energy thus reducing the entrainment of momentum towards the recirculating flow. The combination of both mechanisms produces a rise in the base pressure and reduces the drag of the model. Both actuation regimes are characterized by complementary velocity, pressure and drag measurements at several upstream conditions and control parameters. By adding curved surfaces to deviate the jets by the Coanda effect, periodic actuation is reinforced and drag reductions of approximately 20 % are achieved. The unsteady Coanda blowing not only intensifies the flow deviation and the base pressure recovery but also preserves the unsteady high-frequency forcing effect on the turbulent field. The present results encourage further development of fluidic control to improve the aerodynamics of road vehicles and provide a complementary insight into the relation between wake dynamics and drag.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, P., Vukasinovic, B. & Glezer, A. 2011 Direct measurements of controlled aerodynamic forces on a wire-suspended axisymmetric body. Exp. Fluids 50 (6), 17111725.Google Scholar
Ahmed, S. R., Ramn, G. & Faltin, G.1984 Some salient features of the time averaged ground vehicle wake. SAE Tech. Rep. No. 840300, Society of Automotive Engineers, Inc., Warrendale, PA.Google Scholar
Balachandar, S., Mittal, R. & Najjar, F. M. 1997 Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. J. Fluid Mech. 351, 167199.Google Scholar
Barros, D.2015 Wake and drag manipulation of a bluff body using fluidic forcing. PhD thesis, École Nationale Supérieure de Mécanique et d‘Aérotechnique (ENSMA).Google Scholar
Barros, D., Borée, J., Noack, B. R. & Spohn, A. 2016 Resonances in the forced turbulent wake past a 3D blunt body. Phys. Fluids 28 (6), 065104.Google Scholar
Barros, D., Ruiz, T., Borée, J. & Noack, B. R. 2014 Control of a three-dimensional blunt body wake using low and high frequency pulsed jets. Intl J. Flow Control 6 (1), 6174.Google Scholar
Bearman, P. W. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21 (02), 241255.Google Scholar
Bradshaw, P.1973 Effects of streamline curvature on turbulent flow. Tech. Rep. DTIC Document.Google Scholar
Brunton, S. T. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.Google Scholar
Cattafesta, L. N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.Google Scholar
Chaligné, S.2013 Contrôle du sillage d’un corps non profilé: application expérimentale à une maquette simplifiée de véhicule industriel. PhD thesis, École Centrale de Lyon.Google Scholar
Chaligné, S., Castelain, T., Michard, M. & Juvé, D. 2013 Active control of the flow behind a two-dimensional bluff body in ground proximity. C. R. Méc. 341 (3), 289297.Google Scholar
Choi, H., Jeon, W. P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.Google Scholar
Choi, H., Lee, J. & Park, H. 2014 Aerodynamics of heavy vehicles. Annu. Rev. Fluid Mech. 46, 441468.Google Scholar
Chun, K. B. & Sung, H. J. 1996 Control of turbulent separated flow over a backward-facing step by local forcing. Exp. Fluids 21 (6), 417426.Google Scholar
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.Google Scholar
Dahan, J. A., Morgans, A. S. & Lardeau, S. 2012 Feedback control for form-drag reduction on a bluff body with a blunt trailing edge. J. Fluid Mech. 704, 360387.Google Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.Google Scholar
Englar, R. J.2001 Advanced aerodynamic devices to improve the performance, economics, handling and safety of heavy vehicles. SAE Tech. Rep. No. 2001-01-2072. Society of Automotive Engineers.Google Scholar
Evrard, A., Cadot, O., Herbert, V., Ricot, D., Vigneron, R. & Délery, J. 2016 Fluid force and symmetry breaking modes of a 3d bluff body with a base cavity. J. Fluids Struct. 61, 99114.Google Scholar
Fiedler, H. E. 1998 Control of free turbulent shear flows. In Flow Control, pp. 335429. Springer.Google Scholar
Freund, J. B. & Mungal, M. G. 1994 Drag and wake modification of axisymmetric bluff bodies using Coanda blowing. J. Aircraft 31 (3), 572578.Google Scholar
Gerrard, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25, 401413.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.Google Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.Google Scholar
Glezer, A., Amitay, M. & Honohan, A. M. 2005 Aspects of low-and high-frequency actuation for aerodynamic flow control. AIAA J. 43 (7), 15011511.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2013 Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.Google Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365422.CrossRefGoogle Scholar
Hucho, W. H. & Sovran, G. 1993 Aerodynamics of road vehicles. Annu. Rev. Fluid Mech. 25, 485537.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Jukes, T. N. & Choi, K. S. 2009 Long lasting modifications to vortex shedding using a short plasma excitation. Phys. Rev. Lett. 102 (25), 254501.Google Scholar
Krajnovic, S. & Davidson, L. 2003 Numerical study of the flow around a bus-shaped body. Trans. ASME J. Fluids Engng 125 (3), 500509.CrossRefGoogle Scholar
Krentel, D., Muminovic, R., Brunn, A., Nitsche, W. & King, R. 2010 Application of active flow control on generic 3D car models. In Active Flow Control II, pp. 223239. Springer.Google Scholar
Lahaye, A., Leroy, A. & Kourta, A. 2014 Aerodynamic characterisation of a square back bluff body flow. Intl J. Aerodyn. 4 (1–2), 4360.Google Scholar
Littlewood, R. & Passmore, M.2010, The optimization of roof trailing edge geometry of a simple square-back. Tech. Rep. SAE Tech. Paper.Google Scholar
Littlewood, R. P & Passmore, M. A. 2012 Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing. Exp. Fluids 53 (2), 519529.Google Scholar
Morris, S. C. & Foss, J. F. 2003 Turbulent boundary layer to single-stream shear layer: the transition region. J. Fluid Mech. 494, 187221.CrossRefGoogle Scholar
Morrison, J. F. & Qubain, A. 2009 Control of an axisymmetric turbulent wake by a pulsed jet. In Advances in Turbulence XII, pp. 225228. Springer.Google Scholar
Oster, D. & Wygnanski, I. 1982 The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91130.Google Scholar
Östh, J., Noack, B. R., Krajnović, S., Barros, D. & Borée, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body. J. Fluid Mech. 747, 518544.Google Scholar
Oxlade, A. R., Morrison, J. F., Qubain, A. & Rigas, G. 2015 High-frequency forcing of a turbulent axisymmetric wake. J. Fluid Mech. 770, 305318.Google Scholar
Parezanović, V., Laurentie, J. C., Fourment, C., Delville, J., Bonnet, J. P., Spohn, A., Duriez, T., Cordier, L., Noack, B. R., Abel, M. et al. 2015 Mixing layer manipulation experiment. Flow Turbul. Combust. 94 (1), 155173.Google Scholar
Park, H., Lee, D., Jeon, W. P., Hahn, S., Kim, J., Kim, J, Choi, J. & Choi, H. 2006 Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device. J. Fluid Mech. 563, 389414.Google Scholar
Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.Google Scholar
Pfeiffer, J. & King, R. 2012 Multivariable closed-loop flow control of drag and yaw moment for a 3d bluff body. In Proceedings of the 6th AIAA Flow Control Conference.Google Scholar
Rigas, G., Oxlade, A. R., Morgans, A. S. & Morrison, J. F. 2014 Low-dimensional dynamics of a turbulent axisymmetric wake. J. Fluid Mech. 755, R5.Google Scholar
Roshko, A. 1955 On the wake and drag of bluff bodies. J. Aero. Sci. 22 (2).Google Scholar
Roshko, A1993a Free shear layers, base pressure and bluff-body drag. Tech. Rep. DTIC Document.Google Scholar
Roshko, A. 1993b Perspectives on bluff body aerodynamics. J. Wind Engng Ind. Aerodyn. 49 (1), 79100.Google Scholar
Roumeas, M., Gilliéron, P. & Kourta, A. 2009 Analysis and control of the near-wake flow over a square-back geometry. Comput. Fluids 38 (1), 6070.Google Scholar
Ruiz, T., Sicot, C., Brizzi, L. E., Laumonier, J., Borée, J. & Gervais, Y. 2009 Unsteady near wake of a flat disk normal to a wall. Exp. Fluids 47 (4–5), 637653.Google Scholar
Seifert, A., Shtendel, T. & Dolgopyat, D. 2015 From lab to full scale Active Flow Control drag reduction: How to bridge the gap? J. Wind Engng Ind. Aerodyn. 147, 262272.Google Scholar
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids 10 (9), 22812297.Google Scholar
Smith, B. L. & Glezer, A. 2002 Jet vectoring using synthetic jets. J. Fluid Mech. 458, 134.Google Scholar
Smith, B. L. & Glezer, A. 2005 Vectoring of adjacent synthetic jets. AIAA J. 43 (10), 21172124.Google Scholar
Spohn, A. & Gilliéron, P. 2002 Flow separations generated by a simplified geometry of an automotive vehicle. In IUTAM Symposium: Unsteady Separated Flows.Google Scholar
Sujar-Garrido, P., Benard, N., Moreau, E. & Bonnet, J. P. 2015 Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step. Exp. Fluids 56 (4), 116.Google Scholar
Volpe, R., Devinant, P. & Kourta, A. 2015 Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Exp. Fluids 56 (5), 122.Google Scholar
Vukasinovic, B., Rusak, Z. & Glezer, A. 2010 Dissipative small-scale actuation of a turbulent shear layer. J. Fluid Mech. 656, 5181.Google Scholar
Wassen, E., Eichinger, S. & Thiele, F. 2010 Simulation of active drag reduction for a square-back vehicle. In Active Flow Control II, pp. 241255. Springer.Google Scholar