Published online by Cambridge University Press: 19 April 2006
A simple analysis shows that with a disturbance present the potential jump in a steady flow in a canal is expressed in terms of (1) the effective volume (displaced volume and added mass/density of fluid) and (2) the depth Froude number for either a submerged body or a body with thin waterplane area. For a ship moving in a canal, the expression for potential jump contains a contribution from the line integral term along the intersection between the ship hull and the free surface. When a pressure distribution is given on the free surface, the potential jump can be expressed explicitly in terms of the depth Froude number and the total pressure force, regardless of the shape of the pressure distribution. From the present relations, the added mass of a ship in steady motion in a canal is computed from the potential jump computed previously by the author for various Froude numbers. This added mass plays an essential role in the equation of motion initially when a sudden external force is applied to a steady moving ship. The present analysis is complimentary to that of Newman (1976) and the extension of that to the three-dimensional case. As practical applications of the potential jump, which has had a limited interest, we proposed approximate formulas for speed correction and sinkage of a ship in a towing tank experiment. Also proposed is an approximate formula for the speed correction in a wind tunnel experiment. The present approximate formula is compared with ‘exact’ numerical results obtained by the localized finite element method for both towing tank and wind tunnel experiments. The present speed correction formula is also compared with existing approximate formulas for a wind tunnel experiment. The present formulas compare favourably with the exact numerical results.