Published online by Cambridge University Press: 19 April 2006
A first-order analysis is presented for the propagation of a blast wave through a dilute spray of non-reactive liquid droplets that are suspended in a non-reactive gas-phase carrier. The analysis permits straightforward computation of decay rates and internal wave structure for wave strengths in the approximate Mach number range 4 ≤ Ms ≤ 15, and loading factors (mass of spray per unit mass of carrier) less than about 0·4. The droplets must be sufficiently small to completely change phase in a distance behind the shock that is at all times negligible compared with the wave radius. Representative calculations are presented and discussed. These show more rapid decay rates and higher pressures, densities, and particle velocities in two-phase blast waves when compared against equivalent gas-phase blast waves. A simplification of the analysis for the regime of higher wave Mach numbers (strong waves) is also given, which for that case allows direct algebraic calculation of early wave characteristics.