Hostname: page-component-6587cd75c8-67gbf Total loading time: 0 Render date: 2025-04-23T23:34:46.567Z Has data issue: false hasContentIssue false

Birth of a bubble: drop impact onto a thin liquid film for an immiscible three-fluid system

Published online by Cambridge University Press:  16 April 2025

Pierre-Antoine Maës*
Affiliation:
LadHyX, CNRS & Ecole Polytechnique, UMR 7646, IP Paris, 91128 Palaiseau, France
Alidad Amirfazli
Affiliation:
Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada
Christophe Josserand
Affiliation:
LadHyX, CNRS & Ecole Polytechnique, UMR 7646, IP Paris, 91128 Palaiseau, France
*
Corresponding author: Pierre-Antoine Maës, [email protected]

Abstract

When a drop impacts a solid substrate or a thin liquid film, a thin gas disc is entrapped due to surface tension, the gas disc retracting into one or several bubbles. While the evolution of the gas disc for impact on solid substrate or film of the same fluid as the drop has been largely studied, little is known on how it varies when the liquid of the film is different from that of the drop. We study numerically the latter unexplored area, focusing on the contact between the drop and the film, leading to the formation of an air bubble. The volume of fluid method was adapted to three fluids in the framework of the Basilisk solver. The numerical simulations show that the deformation of the liquid film due to air cushioning plays a crucial role in bubble entrapment. A new model for the contact time and the entrapment geometry was deduced from the case of the impact on a solid substrate. This was done by considering the deformation of the thin immiscible liquid layer during impact depending mainly on its thickness and viscosity. The lubrication of the gas layer was found to be the major effect governing bubble entrapment. However, the film viscosity was also identified as having a critical role in bubble formation and evolution; the magnitude of its influence was also quantified.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alventosa, L.F., Cimpeanu, R. & Harris, D.M. 2023 Inertio-capillary rebound of a droplet impacting a fluid bath. J. Fluid Mech. 958, A24.CrossRefGoogle Scholar
Bouwhuis, W., van der Veen, R.C.A., Tran, T., Keij, D.L., Winkels, K.G., Peters, I.R., van der Meer, D., Sun, C., Snoeijer, J.H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.CrossRefGoogle ScholarPubMed
Che, Z. & Matar, O.K. 2018 Impact of droplets on immiscible liquid films. Soft Matt. 14 (9), 15401551.CrossRefGoogle ScholarPubMed
Chen, N., Chen, H. & Amirfazli, A. 2017 Drop impact onto a thin film: miscibility effect. Phys. Fluids 29 (9), 092106.CrossRefGoogle Scholar
David, R., Dobson, S. M., Tavassoli, Z., Cabezas, M. & Neumann, A. 2009 Investigation of the Neumann triangle for dodecane liquid lenses on water. Colloids Surf. A: Physicochem. Engng Aspects 333 (1-3), 1218.CrossRefGoogle Scholar
Dritselis, C. & Karapetsas, G. 2022 Open-source finite volume solvers for multiphase (n-phase) flows involving either Newtonian or non-Newtonian complex fluids. Comput. Fluids 245, 105590.CrossRefGoogle Scholar
Duchemin, L. & Josserand, C. 2010 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.Google Scholar
Duchemin, L. & Josserand, C. 2012 Rarefied gas correction for the bubble entrapment singularity in drop impacts. Comptes Rendus Mécanique 340 (11-12), 797803.Google Scholar
Duchemin, L. & Josserand, C. 2020 Dimple drainage before the coalescence of a droplet deposited on a smooth substrate. Proc. Natl Acad. Sci. USA 117 (34), 2041620422.CrossRefGoogle ScholarPubMed
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.CrossRefGoogle Scholar
Fudge, B.D., Cimpeanu, R. & Castrejón-Pita, A.A. 2021 Dipping into a new pool: the interface dynamics of drops impacting onto a different liquid. Phys. Rev. E 104 (6), 065102 .CrossRefGoogle ScholarPubMed
Fudge, B.D., Cimpeanu, R. & Castrejón-Pita, A.A. 2024 Drop impact onto immiscible liquid films floating on pools. Sci. Rep UK 14 (1), 13671.CrossRefGoogle ScholarPubMed
Hendrix, M.H.W., Bouwhuis, W., van der Meer, D., Lohse, D. & Snoeijer, J.H. 2016 Universal mechanism for air entrainment during liquid impact. J. Fluid Mech. 789, 708725.CrossRefGoogle Scholar
Hicks, P.D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.CrossRefGoogle Scholar
Howland, C.J., Antkowiak, A., Castrejón-Pita, J.R., Howison, S.D., Oliver, J.M., Style, R.W. & Castrejón-Pita, A.A. 2016 It’s harder to splash on soft solids. Phys. Rev. Lett. 117 (18), 184502.CrossRefGoogle ScholarPubMed
Huang, K-L. & Pan, K.-L. 2021 Transitions of bouncing and coalescence in binary droplet collisions. J. Fluid Mech. 928, A7.CrossRefGoogle Scholar
Jian, Z., Channa, M.A., Kherbeche, A., Chizari, H., Thoroddsen, S.T. & Thoraval, M.-J. 2020 To split or not to split: dynamics of an air disk formed under a drop impacting on a pool. Phys. Rev. Lett. 124 (18), 184501 .CrossRefGoogle ScholarPubMed
Josserand, & Zaleski, 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48 (1), 365391.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D.Y. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113 (19), 194501.CrossRefGoogle ScholarPubMed
Korobkin, A., Ellis, A. & Smith, F. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.CrossRefGoogle Scholar
Kromer, J., Potyka, J., Schulte, K. & Bothe, D. 2023 Efficient sequential PLIC interface positioning for enhanced performance of the three-phase voF method. Comput. Fluids 266, 106051.CrossRefGoogle Scholar
Lang, J. Jr. 1976 Interfacial tensions in a system of three liquid phases. J. Phys. Chem. 80 (15), 17191723.CrossRefGoogle Scholar
Lo, H. Y., Liu, Y. & Xu, L. 2017 Mechanism of contact between a droplet and an atomically smooth substrate. Phys. Rev. X 7 (2), 021036.Google Scholar
Mandre, S., Mani, M. & Brenner, M.P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.CrossRefGoogle ScholarPubMed
Marcotte, F., Michon, G.-J., Séon, T. & Josserand, C. 2019 Ejecta, corolla, and splashes from drop impacts on viscous fluids. Phys. Rev. Lett. 122 (1), 014501.CrossRefGoogle ScholarPubMed
McGinn, P., Tretola, G. & Vogiatzaki, K. 2022 Unified modeling of cavitating sprays using a three-component volume of fluid method accounting for phase change and phase miscibility. Phys. Fluids 34 (8), 082108.CrossRefGoogle Scholar
Michon, G.-J., Josserand, C. & Séon, T. 2017 Jet dynamics post drop impact on a deep pool. Phys. Rev. Fluids 2 (2), 023601.CrossRefGoogle Scholar
Pan, K.-L., Tseng, Y.-H., Chen, J.-C., Huang, K.-L., Wang, C.-H. & Lai, M.-C. 2016 Controlling droplet bouncing and coalescence with surfactant. J. Fluid Mech. 799, 603636.CrossRefGoogle Scholar
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Qin, Z., Wu, J., Cai, Y., Lin, L. & You, H. 2023 Effects of an immiscible liquid film on an impacting droplet. Intl J. Multiphase Flow 163, 104427.CrossRefGoogle Scholar
Sanjay, V., Lakshman, S., Chantelot, P., Snoeijer, JH. & Lohse, D. 2023 Drop impact on viscous liquid films. J. Fluid Mech. 958, A25.CrossRefGoogle Scholar
Sprittles, J.E. 2024 Gas microfilms in droplet dynamics: when do drops bounce? Annu. Rev. Fluid Mech. 56 (2024), 91118.CrossRefGoogle Scholar
Sykes, T.C., Cimpeanu, R., Fudge, B.D., Castrejón-Pita, J.R. & Castrejón-Pita, A.A. 2023 Droplet impact dynamics on shallow pools. J. Fluid Mech. 970, A34.CrossRefGoogle Scholar
Thoraval, M.-J., Takehara, K., Etoh, T. & Thoroddsen, S. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.CrossRefGoogle Scholar
Thoroddsen, S., Etoh, T. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Thoroddsen, S., Etoh, T., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.CrossRefGoogle Scholar
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Veen, R. C. d., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85 (2), 026315 .Google ScholarPubMed
Yakush, S., Sivakov, N., Melikhov, O. & Melikhov, V. 2024 Three-phase VOF modeling of water jet – molten metal interaction. Nucl. Engng Des. 418, 112893.CrossRefGoogle Scholar
Yamazaki, M., Jemcov, A. & Sakaue, H. 2021 A review on the current status of icing physics and mitigation in aviation. Aerospace 8 (7), 188.CrossRefGoogle Scholar
Yap, Y., Li, H., Lou, J., Pan, L. & Shang, Z. 2017 Numerical modeling of three-phase flow with phase change using the level-set method. Intl J. Heat Mass Transfer 115, 730740.CrossRefGoogle Scholar
Yarin, A. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38 (1), 159192.CrossRefGoogle Scholar
Yeganehdoust, F., Attarzadeh, R., Karimfazli, I. & Dolatabadi, A. 2020 A numerical analysis of air entrapment during droplet impact on an immiscible liquid film. Intl J. Multiphase Flow 124, 103175.CrossRefGoogle Scholar
Zhao, C., Maarek, J., Taleghani, S.M. & Zaleski, S. 2024 A hybrid continuum surface tension force for the three-phase VOF method. J. Comput. Phys. 504, 112872.CrossRefGoogle Scholar
Zhao, L., Mao, J., Bai, X., Liu, X., Li, T. & Williams, J. 2016 Finite element simulation of impulse wave generated by landslides using a three-phase model and the conservative level set method. Landslides 13 (1), 8596.CrossRefGoogle Scholar