Published online by Cambridge University Press: 26 April 2006
The bifurcation of steady periodic waves from irrotational inviscid streamflows is considered. Normalizing the flux Q to unity leaves two other natural quantities R (pressure head) and S (flowforce) to parameterize the wavetrain. In a well-known paper, Benjamin & Lighthill (1954) presented calculations within a cnoidal-wave theory which suggested that the corresponding values of R and S lie inside the cusped locus traced by the sub- and supercritical streamflows. This rule has been applied since to many other flow scenarios. In this paper, regular expansions for the streamfunction and profile are constructed for a wave forming on a subcritical stream and thence values for R and S are calculated. These describe, locally, how wave brances in (R, S) parameter space point inside the streamflow cusp. Accurate numerics using a boundry-integral solver show how these constant-period branches extend globally and map out parameter space. The main result is to show that the large-amplitude branches for all steady Stokes’ waves lie surprisingly close to the subcritical stream branch, This has important consequences for the feasibility of undular bores (as opposed to hydraulic jumps) in obstructed flow. Moreover, the transition from the ‘long-wave region’ towards the ‘deep-water limit’ is char-acterized by an extreme geometry, bith of the wave branches and how they sit inside each other. It is also shown that a single (Q, R, S) trriple may represent more than one wave since the global branches can overlap in (R, S) parameter space. This non-uniqueness is not that associated with the known premature maxima of wave propertties as functions of wave amplitude near waves of greatest height.