Published online by Cambridge University Press: 20 April 2006
A new method is proposed for the calculation of gravity waves on deep water. This is based on some recently discovered quadratic identities between the Fourier coefficients an in Stokes's expansion. The identities are shown to be derivable from a cubic potential function, which in turn is related to the Lagrangian of the motion. A criterion for the bifurcation of uniform waves into a series of steady waves of non-uniform amplitude is expressed by the vanishing of a particular determinant with elements which are linear combinations of the coefficients an. The critical value of the wave steepness for the symmetric bifurcations discovered by Chen & Saffman (1980) are verified. It is shown that a truncated scheme consisting of only the coefficients a0, a1 and a2 already exhibits Class 2 bifurcation, and similarly for Class 3. Asymmetric bifurcations are also discussed. A recent suggestion by Tanaka (1983) that gravity waves exhibit a Class 1 bifurcation at the point of maximum energy is shown to be incorrect.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.