Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T21:59:47.246Z Has data issue: false hasContentIssue false

Bénard–Marangoni instability in rigid rectangular containers

Published online by Cambridge University Press:  26 April 2006

P. C. Dauby
Affiliation:
Université de Liége, Institut de Physique B5, Sart Tilman, B 4000 Liége 1, Belgium e-mail: [email protected]
G. Lebon
Affiliation:
Université de Liége, Institut de Physique B5, Sart Tilman, B 4000 Liége 1, Belgium e-mail: [email protected]

Abstract

Thermocapillary convection in three-dimensional rectangular finite containers with rigid lateral walls is studied. The upper surface of the fluid layer is assumed to be flat and non-deformable but is submitted to a temperature-dependent surface tension. The realistic ‘no-slip’ condition at the sidewalls makes the method of separation of variables inapplicable for the linear problem. A spectral Tau method is used to determine the critical Marangoni number and the convective pattern at the threshold as functions of the aspect ratios of the container. The influence on the critical parameters of a non-vanishing gravity and a non-zero Biot number at the upper surface is also examined. The nonlinear regime for pure Marangoni convection (Ra = 0) and for Pr = 104, Bi = 0 is studied by reducing the dynamics of the system to the dynamics of the most unstable modes of convection. Owing to the presence of rigid walls, it is shown that the convective pattern above the threshold may be quite different from that predicted by the linear approach. The theoretical predictions of the present study are in very good agreement with the experiments of Koschmieder & Prahl (1990) and agree also with most of Dijkstra's (1995a, b) numerical results. Important differences with the analysis of Rosenblat, Homsy & Davis (1982b) on slippery walls containers are emphasized.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900 Rev. Gen. Sci. Pure Appl. 11, 1261.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Chandrasekhar, S. 1961 Hydro dynamic and Hydromagnetic Stability. Clarendon.
Dauby, P. C. 1994 Instabilites thermocapillaires et effets de confinement. PhD thesis, University of Liège, Belgium.
Dauby, P. C. & Lebon, G. 1994 Series on Advances in Mathematics for Applied Sciences (ed. S. Rionero & T. Ruggeri), vol. 23, pp. 118123. World Scientific. (Proc. of the VII Intl Conf. on Waves and Stability in Continuous Media, Bologna, Italy, 4–9 October 1993).
Dauby, P. C., Lebon, G. & Colinet, P. 1996 Series on Advances in Mathematics for Applied Sciences. World Scientific. (Proc. of the VIII Int. Conf. on Waves and Stability in Continuous Media, Palermo, Italy, 9–15 October 1995).
Dauby, P. C., Lebon, G., Colinet, P. & Legros, J. C. 1993 Q. J. Mech. Appl. Maths, 46, 683.
Davies Jones, R. P. 1970 J. Fluid Mech. 44, 695.
Davis, S. H. 1967 J. Fluid Mech. 30, 465.
Dijkstra, H. A. 1992 J. Fluid Mech. 243, 73.
Dukstra, H. A. 1995a Microgravity Sci. Technol. 7, 307.
Dijkstra, H. A. 1995b Microgravity Sci. Technol. 8, 70.
Dijkstra, H. A. 1995c Microgravity Sci. Technol. 8, 155.
Eckhaus, W. 1965 Studies in Nonlinear Stability Theory. Springer.
Finlayson, B. A. 1972 The Method of Weighted Residuals and Variational Principles. Academic.
Foias, C., Jolly, M. S., Kevrekidis, I. G., Sell, G. R. & Titi, E. S. 1988 Phys. Lett. A 131, 433.
Haken, H. 1983 Advanced Synergetics. Springer.
Koschmieder, E. L. 1993 Benard Cells and Taylor Vortices. Cambridge University Press.
Koschmjeder, E. L. & Biggerstaff, M. I. 1986 J. Fluid Mech. 167, 49.
Koschmieder, E. L. & Prahl, S. A. 1990 J. Fluid Mech. 215, 571.
Lebon, G. & Perez García, C. 1980 Bull. Classe Sci., Acad. R. Belg. 64, 520.
Luijkx, J. M. & Flatten, J. K. 1981 J. Non-equilibr. Therm. 6, 141.
Manneville, P. 1990 Dissipative Structures and Weak Turbulence. Academic.
Nield, D. A. 1964 J. Fluid Mech. 19, 341.
Parmentier, P., Regnier, V., Lebon, G. & Legros, J.-C. 1996 Phys. Rev. E 53 (to be published).
Pearson, J. R A. 1958 J. Fluid Mech. 4, 489.
Pellew, A. & Southwell, R. V. 1940 Prov. R. Soc. A 176, 312.
Flatten, J. K. & Legros, J. C. 1984 Convection in Liquids. Springer.
Rayleigh, Lord 1916 Phil. Mag. 32, 529.
Rosenblat, S., Davis, S. H. & Homsy, G. M. 1982a J. Fluid Mech. 120, 91.
Rosenblat, S., Homsy, G. M. & Davis, S. H. 1982b J. Fluid Mech. 120, 123.
Seydel, R. 1988 From Equilibrium to Chaos. Elsevier.
Takashima, M. 1970 J. Phys. Soc. Japan 28, 810.
Vidal, A. & Acrivos, A. 1966 Phys. Fluids 9, 615.
Vooren, A. I. Van de & Dijkstra, H. A. 1989 Comput. Fluids 17, 467.
Winters, K. H. & Plesser, TH. 1988 Physica D 29, 387.
Zaman, A. A. & Narayanan, R. 1996 J. Colloid Interface Sci. 179, 151.