Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T18:37:20.555Z Has data issue: false hasContentIssue false

Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation

Published online by Cambridge University Press:  28 March 2006

G. Segré
Affiliation:
Weizmann Institute of Science, Rehovoth, Israel
A. Silberberg
Affiliation:
Weizmann Institute of Science, Rehovoth, Israel

Abstract

It is shown that a rigid sphere transported along in Poiseuille flow through a tube is subject to radial forces which tend to carry it to a certain equilibrium position at about 0.6 tube radii from the axis, irrespective of the radial position at which the sphere first entered the tube. It is further shown that the trajectories of the particles are portions of one master trajectory and that the origin of the forces causing the radial displacements is in the inertia of the moving fluid. An analysis of the parameters determining the behaviour is presented and a phenomenological description valid at low Reynolds numbers is arrived at in terms of appropriate reduced variables. These phenomena have already been described in a preliminary note (Segré & Silberberg 1961). The present more complete analysis confirms the conclusions, but it appears that the dependence of the effects on the particle radius go with the third and not the fourth power as was then reported.

It is also shown that the description of the phenomena becomes more complicated at tube Reynolds numbers above about 30.

Type
Research Article
Copyright
© 1962 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayliss, I. E. 1960 Flow Properties of Blood. Oxford: Pergamon Press.
Frey-Wyssling, A. 1952 Deformation and Flow in Biological Systems. Amsterdam: North Holland Publ. Co.
Goldsmith, H. L. & Mason, S. G. 1961 Nature, Lond., 190, 1095.
Happel, J. & Brenner, H. 1958 J. Fluid Mech. 4, 195.
Jeffery, G. B. 1922 Proc. Roy. Soc. A, 102, 161.
Lorentz, H. A. 1907 Abhandlungen über Theoretische Physik. Leipzig.
Manley, R. St. J. & Mason, S. G. 1952 J. Coll. Sci. 7, 354.
Maude, A. D. & Whitmore, R. L. 1956 Brit. J. Appl. Phys. 7, 98.
Poiseuille, J. L. M. 1836 Ann. Sci. Nat. (2), 5, 111.
Rubinow, S. I. & Keller, J. B. 1961 J. Fluid Mech. 11, 447.
Saffman, P. G. 1956 J. Fluid Mech. 1, 540.
Scott-Blair, W. G. 1958 Rheologica Acta, 1, 123.
Segré, G. & Silberberg, A. 1961 Nature, Lond., 189, 209.
Segré, G. & Silberberg, A. 1962 J. Fluid Mech. 14, 115.
Simha, R. 1936 Kolloid Z. 76, 16.
Smith, A. M. O. 1960 J. Fluid Mech. 7, 565.
Steenberg, B. & Wahren, D. 1960 Svensk Papperstidning, 63, 347.
Taylor, M. 1955 Aust. J. Exp. Biol. 33, 1.
Tollert, H. 1954 Chem. Ing. Tech. 26, 141, 270.
Vand, V. 1948 J. Phys. Chem. 52, 300.
Vejlens, G. 1938 Acta Path. Microbiol. Scand. (Suppl.), no. 33.