Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T18:48:23.068Z Has data issue: false hasContentIssue false

The behaviour of clusters of spheres falling in a viscous fluid Part 1. Experiment

Published online by Cambridge University Press:  28 March 2006

K. O. L. F. Jayaweera
Affiliation:
Chemical Defence Experimental Establishment, Porton, Nr Salisbury, Wiltshire
B. J. Mason
Affiliation:
Chemical Defence Experimental Establishment, Porton, Nr Salisbury, Wiltshire
G. W. Slack
Affiliation:
Physics Department, Imperial College, London

Abstract

The sedimentation of small clusters of uniform spheres, falling freely through a viscous liquid, has been studied with Reynolds numbers (based on diameter of the sphere and its velocity of free fall in the unbounded fluid) of individual spheres ranging from 10−4 to 10. The fall velocity of a cluster is, in all cases, greater than that of individual spheres, the more so when the spheres are closer together. Two spheres falling side-by-side rotate inwards and separate as they fall if Re > 0·05, but no rotation nor separation is observed for Re < 0·03. When equal-sized spheres of Re > 1 fall vertically one behind the other, the rear sphere is accelerated into the wake of the leader, rotates, round it and separates from it when the line of centres is horizontal. If two spheres of unequal size but the same individual terminal velocity fall together, the smaller always travels faster than the larger. When three similar equally spaced spheres are dropped in a horizontal line, they interchange positions but do not separate when 0·06 < Re < 0·16. But, if 0·16 < Re < 3, one sphere is always left behind; which sphere depends critically upon the initial spacing. If three to six equal spheres, of 0·06 < Re < 7, start falling as a compact cluster, they eventually draw level and arrange themselves in the same horizontal plane at the vertices of a regular polygon. The polygon expands at a decreasing rate during fall. When three spheres are arranged initially in a horizontal isosceles triangle, the spheres oscillate about their equilibrium positions but eventually the spheres form a stable equil triagnle. If Re > 7, or the cluster contains 7 or more equal spheres, it shows no tendency to form a regular polygon but breaks up into two or more groups. A regular heptagon, and a hexagon with an additional sphere at its centre, are also unstable.

Type
Research Article
Copyright
© 1964 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eveson, G. F. 1960 Brit. J. Appl. Phys. 11, 88.
Eveson, G. F., Hall, E. W. & Ward, S. G. 1959 Brit. J. Appl. Phys. 10, 43.
Faxén, H. 1925 Arkiv. Math., Astron. Fysik, 19a, 13.
Goldstein, S. 1929 Proc. Roy. Soc. A, 123, 216.
Hocking, L. M. 1958 Ph.D. Thesis, London University.
Kynch, G. J. 1959 J. Fluid Mech. 5, 193.
Matthews, H. W. & Smith, F. B. Brit. J. Appl. Phys. 11, 87.
Pearcey, T. & McHugh, B. 1955 Phil. Mag. 46, 783.
Smoluchowski, M. S. 1911 Bull. Acad. Sci. Cracow, 1a, 28.
Smoluchowski, M. S. 1912 Proc. 5th Int. Congr. Math. 2, 192.
Stimson, M. & Jeffery, G. B. 1926 Proc. Roy. Soc. A, 111, 110.