Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T16:34:38.669Z Has data issue: false hasContentIssue false

Available potential energy diagnosis in a direct numerical simulation of rotating stratified turbulence

Published online by Cambridge University Press:  10 April 2009

GUILLAUME ROULLET*
Affiliation:
Laboratoire de Physique des Océans UMR6523 (CNRS, UBO, IFREMER, IRD), Brest, France
PATRICE KLEIN
Affiliation:
Laboratoire de Physique des Océans UMR6523 (CNRS, UBO, IFREMER, IRD), Brest, France
*
Email address for correspondence: [email protected]

Abstract

Review of three studies devoted to the available potential energy (APE) leads to the proposal of a diagnosis for APE, well-suited for rotating stratified flows within the primitive equations (PE) framework in which anharmonic effects (due to large vertical displacements of isopycnals) are permitted. The chosen diagnosis is based on the APE definition of Holliday & McIntyre (J. Fluid Mech., vol. 107, 1981, pp. 221–225) and uses the background stratification of Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128). Subsequent evaluation of the APE in a PE direct simulation (1/100°, 200 levels) of oceanic mesoscale turbulence indicates that anharmonic effects are significant. These effects are due to large vertical displacements of the isopycnals and the curvature of the background density profile.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bannon, P. R. 2003 Hamiltonian description of idealized binary geophysical fluids. J. Atmos. Sci. 60, 28092819.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.2.0.CO;2>CrossRefGoogle Scholar
Holliday, D. & McIntyre, M. E. 1981 On potential energy density in an incompressible stratified fluid. J. Fluid Mech. 107, 221225.Google Scholar
Hua, B. L. & Haidvogel, D. B. 1986 Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci. 43, 29232936.2.0.CO;2>CrossRefGoogle Scholar
Klein, P., Hua, B. L., Lapeyre, G., Capet, X., Le Gentil, S. & Sasaki, H. 2008. Upper ocean turbulence from high 3-d resolution simulations. J. Phys. Oceanogr. 38, 17481763.CrossRefGoogle Scholar
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7, 157167.CrossRefGoogle Scholar
McWilliams, J. C. 1989 Statistical properties of decaying geostrophic turbulence. J. Fluid Mech. 198, 199230.CrossRefGoogle Scholar
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Shepherd, T. G. 1993 A unified theory of available potential energy. Atmos. Ocean 31, 126.CrossRefGoogle Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D'Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.CrossRefGoogle Scholar