Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T23:44:37.189Z Has data issue: false hasContentIssue false

Auto-ejection of liquid drops from capillary tubes

Published online by Cambridge University Press:  11 July 2014

Hadi Mehrabian
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
James J. Feng*
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
*
Email address for correspondence: [email protected]

Abstract

Wicking flow inside capillary tubes can attain considerable momentum so as to produce a liquid jet at the end of the tube. Auto-ejection refers to the formation of droplets at the tip of such a jet. Experimental observations suggest that a tapering nozzle at the end of the capillary tube is necessary for auto-ejection; it has never been reported for a straight tube. Besides, most experimental realizations require microgravity, although it is possible under normal gravity if the nozzle has a sufficiently sharp contraction. This computational study focuses on two related issues: the critical condition for auto-ejection, and the hydrodynamics of the liquid meniscus as affected by geometric parameters. We adopt a diffuse-interface Cahn–Hilliard model for the moving contact line, and allow the dynamic contact angle to deviate from the static one through wall energy relaxation. From analyzing the dynamics of the meniscus in the straight tube and the nozzle, we establish a critical condition for the onset of auto-ejection based on a Weber number defined at the exit of the nozzle and an effective length that encompasses the geometric features of the tube–nozzle combination. In particular, this shows that capillary ejection is not possible in straight tubes. With steeper contraction in the nozzle, we predict two additional regimes of interfacial rupture: rapid ejection of multiple droplets and air bubble entrapment. The numerical results are in general agreement with available experiments.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambravaneswaran, B., Subramani, H. J., Phillips, S. D. & Basaran, O. A. 2004 Dripping-jetting transitions in a dripping faucet. Phys. Rev. Lett. 93, 034501.CrossRefGoogle Scholar
Ambravaneswaran, B., Wilkes, E. D. & Basaran, O. A. 2002 Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14, 26062621.CrossRefGoogle Scholar
Anna, S. L., Bontoux, N. & Stone, H. A. 2003 Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364366.CrossRefGoogle Scholar
Antkowiak, A., Bremond, N., Duplat, J., Le Dizès, S. & Villermaux, E. 2007 Cavity jets. Phys. Fluids 19, 091112.CrossRefGoogle Scholar
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.CrossRefGoogle Scholar
Basaran, O. & Xu, Q.2012 Method for producing ultra-small drops. US Patent 8,186,790.Google Scholar
Bosanquet, C. H. 1923 On the flow of liquids into capillary tubes. Philos. Mag. (6) 45, 525531.CrossRefGoogle Scholar
Bracke, M., De Voeght, F. & Joos, P. 1989 The kinetics of wetting: the dynamic contact angle. Prog. Colloid Polym. Sci. 79, 142149.CrossRefGoogle Scholar
Castrejón-Pita, J. R., Castrejón-Pita, A. A., Hinch, E. J., Lister, J. R. & Hutchings, I. M. 2012a Self-similar breakup of near-inviscid liquids. Phys. Rev. E 86, 015301.CrossRefGoogle ScholarPubMed
Castrejón-Pita, A. A., Castrejón-Pita, J. R. & Hutchings, I. M. 2012b Breakup of liquid filaments. Phys. Rev. Lett. 108, 074506.CrossRefGoogle ScholarPubMed
Chen, A. U. & Basaran, O. A. 2002 A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 14, L1L4.CrossRefGoogle Scholar
Dong, H., Carr, W. W. & Morris, J. F. 2006 An experimental study of drop-on-demand drop formation. Phys. Fluids 18, 072102.CrossRefGoogle Scholar
Gao, P. & Feng, J. J. 2009 Enhanced slip on a patterned substrate due to depinning of contact line. Phys. Fluids 21, 102102.CrossRefGoogle Scholar
Gao, P. & Feng, J. J. 2011 A numerical investigation of the propulsion of water walkers. J. Fluid Mech. 668, 363383.CrossRefGoogle Scholar
Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.CrossRefGoogle Scholar
Goldmann, T. & Gonzalez, J. 2000 DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J. Biochem. Biophys. Meth. 42, 105110.CrossRefGoogle ScholarPubMed
Gordillo, J. M. & Gekle, S. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331346.CrossRefGoogle Scholar
Ha, J. & Leal, L. G. 2001 An experimental study of drop deformation and breakup in extensional flow at high capillary number. Phys. Fluids 13, 15681576.CrossRefGoogle Scholar
Hoffman, R. L. 1975 A study of the advancing interface. I. Interface shape in liquid-gas systems. J. Colloid Interface Sci. 50 (2), 228241.CrossRefGoogle Scholar
Huh, E. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Jacqumin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5767.CrossRefGoogle Scholar
Jiang, T.-S., Soo-Gun, O.-H. & Slattery, J. C. 1979 Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 7477.CrossRefGoogle Scholar
Leib, S. & Goldstein, M. 1986 Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952954.CrossRefGoogle Scholar
Lowndes, J. 1980 The numerical simulation of the steady movement of a fluid meniscus in a capillary tube. J. Fluid Mech. 101, 631646.CrossRefGoogle Scholar
Lucas, R. 1918 Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flüssigkeiten. Kolloid. Z. 23, 1522.CrossRefGoogle Scholar
Marsh, J. A., Garoff, S. & Dussan, V. 1993 Dynamic contact angles and hydrodynamics near a moving contact line. Phys. Rev. Lett. 70, 27782781.CrossRefGoogle Scholar
Mehrabian, H. & Feng, J. J. 2011 Wicking flow through microchannels. Phys. Fluids 23, 122108.CrossRefGoogle Scholar
Notz, P. K. & Basaran, O. A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.CrossRefGoogle Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2006 A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.CrossRefGoogle Scholar
Quéré, D., Raphaël, É. & Ollitrault, J. 1999 Rebounds in a capillary tube. Langmuir 15, 36793682.CrossRefGoogle Scholar
Schulkes, R. M. S. M. 1996 The contraction of liquid filaments. J. Fluid Mech. 309, 277300.CrossRefGoogle Scholar
Sibley, D. N., Nold, A. & Kalliadasis, S. 2013 Unifying binary fluid diffuse-interface models in the sharp-interface limit. J. Fluid Mech. 736, 543.CrossRefGoogle Scholar
Siegel, R. 1961 Transient capillary rise in reduced and zero-gravity fields. J. Appl. Mech. 28, 165170.CrossRefGoogle Scholar
Stange, M., Dreyer, M. E. & Rath, H. J. 2003 Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15, 25872601.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.CrossRefGoogle Scholar
Sui, Y., Ding, H. & Spelt, P. D. M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.CrossRefGoogle Scholar
Szekely, J., Neumann, A. W. & Chuang, Y. K. 1971 The rate of capillary penetration and the applicability of the Washburn equation. J. Colloid Interface Sci. 35, 273278.CrossRefGoogle Scholar
Takeuchi, S., Garstecki, P., Weibel, D. B. & Whitesides, G. M. 2005 An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17, 10671072.CrossRefGoogle Scholar
Tong, A. Y. & Wang, Z. 2007 Relaxation dynamics of a free elongated liquid ligament. Phys. Fluids 19, 092101.CrossRefGoogle Scholar
Umemura, A. 2011 Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle. Phys. Rev. E 83, 046307.CrossRefGoogle ScholarPubMed
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. & Weitz, D. A. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308, 537541.CrossRefGoogle ScholarPubMed
Voorhees, P. W. 1992 Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 22, 197215.CrossRefGoogle Scholar
Washburn, E. W. 1921 The dynamics of capillary flow. Phys. Rev. 17, 273283.CrossRefGoogle Scholar
Wilkes, E. D. & Basaran, O. A. 2001 Drop ejection from an oscillating rod. J. Colloid Interface Sci. 242, 180201.CrossRefGoogle Scholar
Wollman, A.2012 Capillarity-driven droplet ejection. Master’s thesis, Portland State University, USA.Google Scholar
Wollman, A., Snyder, T., Pettit, D. & Weislogel, M.2012 Spontaneous capillarity-driven droplet ejection. arXiv:1209.3999 [physics.flu-dyn].CrossRefGoogle Scholar
Wollman, A. & Weislogel, M. 2013 New investigations in capillary fluidics using a drop tower. Exp. Fluids 54, 113.CrossRefGoogle Scholar
Xu, Q. & Basaran, O. A. 2007 Computational analysis of drop-on-demand drop formation. Phys. Fluids 19, 102111.CrossRefGoogle Scholar
Yue, P. & Feng, J. J. 2011a Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. - Spec. Top. 197, 3746.CrossRefGoogle Scholar
Yue, P. & Feng, J. J. 2011b Wall energy relaxation in the Cahn–Hilliard model for moving contact lines. Phys. Fluids 23, 012106.CrossRefGoogle Scholar
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2005 Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129, 163176.CrossRefGoogle Scholar
Yue, P., Zhou, C. & Feng, J. J. 2006 A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18, 102102.CrossRefGoogle Scholar
Yue, P., Zhou, C. & Feng, J. J. 2007 Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223, 19.CrossRefGoogle Scholar
Yue, P., Zhou, C. & Feng, J. J. 2010 Sharp interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279294.CrossRefGoogle Scholar
Zhou, C., Yue, P. & Feng, J. J. 2006 Formation of simple and compound drops in microfluidic devices. Phys. Fluids 18, 092105.CrossRefGoogle Scholar
Zhou, C., Yue, P., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229, 498511.CrossRefGoogle Scholar