Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T21:12:39.485Z Has data issue: false hasContentIssue false

Attached eddy model revisited using a minimal quasi-linear approximation

Published online by Cambridge University Press:  07 May 2020

Yongyun Hwang*
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington SW7 2AZ, UK
Bruno Eckhardt
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany
*
Email address for correspondence: [email protected]

Abstract

Townsend’s model of attached eddies for boundary layers is revisited within a quasi-linear approximation. The velocity field is decomposed into a mean profile and fluctuations. While the mean is obtained from the nonlinear equations, the fluctuations are modelled by replacing the nonlinear self-interaction terms with an eddy-viscosity-based turbulent diffusion and stochastic forcing. Under this particular approximation, the resulting fluctuation equations remain linear, enabling solutions to be superposed, the same theoretical idea used in the original attached eddy model. By leveraging this feature, the stochastic forcing is determined self-consistently by solving an optimisation problem which minimises the difference between the Reynolds shear stresses from the mean and fluctuation equations, subject to a constraint that the averaged Reynolds shear-stress spectrum is sufficiently smooth in the spatial wavenumber space. The proposed quasi-linear approximation is subsequently applied to channel flow for Reynolds number $Re_{\unicode[STIX]{x1D70F}}$ ranging from 500 to 20 000. The best result is obtained when the Reynolds stress is calculated by retaining only the two leading proper orthogonal decomposition modes, which further filters out the modelling artefact caused by the unphysical stochastic forcing. In this case, the resulting turbulence intensity profile and energy spectra exhibit the same qualitative behaviour as direct numerical simulation (DNS) data throughout the entire wall-normal domain, while reproducing the early theoretical predictions of the original attached eddy model within a controlled approximation to the Navier–Stokes equations. Finally, the proposed quasi-linear approximation reveals that the peak streamwise and spanwise turbulence intensities may deviate slightly from the logarithmic scaling with the Reynolds number for $Re_{\unicode[STIX]{x1D70F}}\gtrsim 10\,000$, and the supporting evidence is presented using the existing DNS data.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, N. 1982 Fully developed turbulent flow in a pipe: an intermediate layer. Ing.-Arch. 52, 355377.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Baars, W. J. & Marusic, I. 2020a Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. J. Fluid Mech. 882, A25.Google Scholar
Baars, W. J. & Marusic, I. 2020b Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and a 1. J. Fluid Mech. 882, A26.Google Scholar
Balakrishnan, A. V. 1981 Applied Functional Analysis, 2nd edn. Springer.Google Scholar
Bretheim, J. U., Meneveau, C. & Gayme, D. F. 2015 Standard logarithmic mean velocity distribution in a band-limited restricted nonlinear model of turbulent flow in a half-channel. Phys. Fluids 27 (1), 011702.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 5, 774777.CrossRefGoogle Scholar
Cassinelli, A., de Giovanetti, M. & Hwang, Y. 2017 Streak instability in near-wall turbulence revisited. J. Turbul. 18 (5), 443464.CrossRefGoogle Scholar
Cess, R. D.1958 A survey of the literature on heat transfer in turbulent pipe flow. Westinghouse Research Rep. No. 8-0529-R24.Google Scholar
Cho, M., Choi, H. & Hwang, Y. 2016 On the structure of pressure fluctuations of self-sustaining attached eddies. Bull. Am. Phys. Soc. 61 (20), A33.003.Google Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Doohan, P., Willis, A. P. & Hwang, Y. 2019 Shear stress-driven flow: the state space of near-wall turbulence as Re 𝜏. J. Fluid Mech. 874, 606638.CrossRefGoogle Scholar
Eckhardt, B. & Zammert, S. 2018 Small scale exact coherent structures at large Reynolds numbers in plane Couette flow. Nonlinearity 31, R66R77.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.CrossRefGoogle Scholar
Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N. C., Lozano-Durán, A. & Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech. 809, 290315.CrossRefGoogle Scholar
de Giovanetti, M., Sung, H. J. & Hwang, Y. 2017 Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483513.CrossRefGoogle Scholar
Hellstöm, L. H. O., Marusic, I. & Smits, A. J. 2016 Self-similarity of the large-scale motions in turbulent pipe flow. J. Fluid Mech. 792, R1.Google Scholar
Herring, J. R. 1963 Investigation of problems in thermal convection. J. Atmos. Sci. 20 (4), 325338.2.0.CO;2>CrossRefGoogle Scholar
Herring, J. R. 1964 Investigation of problems in thermal convection: rigid boundaries. J. Atmos. Sci. 21 (3), 277290.2.0.CO;2>CrossRefGoogle Scholar
Herring, J. R. 1966 Some analytic results in the theory of thermal convection. J. Atmos. Sci. 23 (6), 672677.2.0.CO;2>CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18, 011702.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hwang, J. & Sung, H. J. 2018 Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 856, 958983.CrossRefGoogle Scholar
Hwang, Y. 2015 Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 723, 264288.CrossRefGoogle Scholar
Hwang, Y. 2016 Mesolayer of attached eddies in turbulent channel flow. Phys. Rev. F 1 (6), 064401.Google Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010a Amplification of coherent streaks in the turbulent Couette flow: an input–output analysis at low Reynolds number. J. Fluid Mech. 643, 333348.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010b Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010c Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23, 061702.CrossRefGoogle Scholar
Hwang, Y., Willis, A. P. & Cossu, C. 2016 Invariant solutions of minimal large-scale structures in turbulent channel flow for Re 𝜏 up to 1000. J. Fluid Mech. 802, R1.CrossRefGoogle Scholar
Illingworth, S. J., Monty, J. P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jiménez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.CrossRefGoogle Scholar
Jovanović, M. R. & Bamieh, B. 2001 Modelling flow statistics using the linearized Navier–Stokes equations. In Proceedings of the 40th IEEE Conference on Decision and Control, pp. 49444949.Google Scholar
von Kármán, T. 1930 Mechanische aehnlichkeit und turbulenz. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 5, 5868; English translation NACA TM 611.Google Scholar
Kim, K. C. & Adrian, R. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Klewicki, J. C. 2013 Self-similar mean dynamics in turbulent wall flows. J. Fluid Mech. 718, 596621.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 209303.Google Scholar
Kolmogorov, A. N. 1991 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A 434, 913.Google Scholar
Lee, M. K. & Moser, R. D. 2015 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 774, 395.CrossRefGoogle Scholar
Lee, M. K. & Moser, R. D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.CrossRefGoogle Scholar
Luenberger, D. G. & Ye, Y. 2016 Linear and Nonlinear Programming. Springer.CrossRefGoogle Scholar
Madhusudanan, A., Illingworth, S. J. & Marusic, I. 2019 Coherent large-scale structures from the linearized Navier–Stokes equations. J. Fluid Mech. 873, 89109.CrossRefGoogle Scholar
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Phil. Trans. R. Soc. Lond. A 225 (1161), 196212.Google Scholar
Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521539.CrossRefGoogle Scholar
Mantic-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.CrossRefGoogle ScholarPubMed
Mantic-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793, 777797.CrossRefGoogle Scholar
Marston, J. B., Chini, G. P. & Tobias, S. M. 2016 Generalized quasilinear approximation: application to zonal jets. Phys. Rev. Lett. 116, 214501.CrossRefGoogle ScholarPubMed
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65 (6), 19551966.CrossRefGoogle Scholar
Marusic, I. & Kunkel, G. J. 2003 Streamwise turbulent intensity formulation for flat-flate boundary layers. Phys. Fluids 15 (8), 2461.CrossRefGoogle Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.CrossRefGoogle Scholar
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
McKeon, B. J. 2019 Self-similar hierarchies and attached eddies. Phys. Rev. F 4, 082601(R).Google Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Moarref, R. & Jovanović, M. R. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.CrossRefGoogle Scholar
Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.CrossRefGoogle Scholar
Morra, P., Semeraro, O., Henningson, D. S. & Cossu, C. 2019 On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969984.CrossRefGoogle Scholar
Pausch, M., Yang, Q., Hwang, Y. & Eckhardt, B. 2019 Quasi-linear approximation of exact coherent states in parallel shear flows. Fluid Dyn. Res. 51, 011402.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.CrossRefGoogle Scholar
Perry, A. E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21, 015109.CrossRefGoogle Scholar
Samie, M., Marusic, I., Hutchins, N., Fu, M. K., Fan, Y., Hultmark, M. & Smits, A. J. 2018 Fully resolved measurements of turbulent boundary layer flows up to Re 𝜏 = 20 000. J. Fluid Mech. 851, 391415.CrossRefGoogle Scholar
Sreenivasan, K. R. & Sahay, A. 1997 The persistence of viscous effects in the overlap region and the mean velocity in turbulent pipe and channel flows. In Self-Sustaining Mechanisms of Wall Turbulence (ed. Panton, R.), pp. 253272. Comp. Mech. Publ.Google Scholar
Thomas, V. L., Farrell, B. F., Ioannou, P. J. & Gayme, D. F. 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27 (10), 105104.CrossRefGoogle Scholar
Thomas, V. L., Lieu, B. K., Jovanovic, M. R., Farrell, B. F., Ioannou, P. J. & Gayme, D. F. 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26 (10), 105112.CrossRefGoogle Scholar
Tobias, S. M. & Marston, J. B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502.CrossRefGoogle ScholarPubMed
Tobias, S. M. & Marston, J. B. 2017 Three-dimensional rotating Couette flow via the generalised quasilinear approximation. J. Fluid Mech. 810, 412428.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Towne, A., Lozano-Durán, A. & Yang, X. I. A. 2020 Resolvent-based estimation of space–time flow statistics. J. Fluid Mech. 883, A17.CrossRefGoogle Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, 1st edn. Cambridge University Press.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vadarevu, S. B., Symon, S., Illingworth, S. J. & Marusic, I. 2019 Coherent structures in the linearized impulse response of turbulent channel flow. J. Fluid Mech. 863, 11901203.CrossRefGoogle Scholar
Wei, T., Fife, P., Klewicki, J. C. & Mcmurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.CrossRefGoogle Scholar
Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Soft. 26, 465519.CrossRefGoogle Scholar
Willert, C. E., Soria, J., Stanislas, M., Klinner, J., Amili, O., Eisfelder, M., Cuvier, C., Bellani, G., Fiorini, T. & Talamelli, A. 2017 Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000. J. Fluid Mech. 826, R5.CrossRefGoogle Scholar
Willis, A. P., Hwang, Y. & Cossu, C. 2010 Optimally amplified large-scale streaks and drag reduction in the turbulent pipe flow. Phys. Rev. E 82, 036321.Google ScholarPubMed
Woodcock, J. D. & Marusic, I. 2015 The statistics behaviour of attached eddies. Phys. Fluids 27, 015104.CrossRefGoogle Scholar
Yang, Q., Willis, A. P. & Hwang, Y. 2019 Exact coherent states of attached eddies in channel flow. J. Fluid Mech. 862, 10291059.CrossRefGoogle Scholar
Zare, A., Georgiou, T. T. & Jovanović, M. R. 2020 Stochastic dynamical modeling of turbulent flows. Annu. Rev. Control Robot. Auton. Syst. 3, 636680.CrossRefGoogle Scholar
Zare, A., Jovanović, M. R. & Georgiou, T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar