Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T17:51:14.541Z Has data issue: false hasContentIssue false

Atomization of undulating liquid sheets

Published online by Cambridge University Press:  07 August 2007

N. BREMOND
Affiliation:
IRPHE, Université de Provence, Aix–Marseille 1, Technopôle de Château-Gombert, 49, rue Frédéric Joliot-Curie, 13384 Marseille Cedex 13, France
C. CLANET
Affiliation:
IRPHE, Université de Provence, Aix–Marseille 1, Technopôle de Château-Gombert, 49, rue Frédéric Joliot-Curie, 13384 Marseille Cedex 13, France
E. VILLERMAUX*
Affiliation:
IRPHE, Université de Provence, Aix–Marseille 1, Technopôle de Château-Gombert, 49, rue Frédéric Joliot-Curie, 13384 Marseille Cedex 13, France
*
Also at: Institut Universitaire de France.

Abstract

The fragmentation of a laminar undulating liquid sheet flowing in quiescent air is investigated. Combining various observations and measurements we propose a sequential atomization scenario describing the overall sheet–drop transition in this configuration. The undulation results from a controlled primary Kelvin–Helmholtz instability. As the liquid travels through the undulating pattern, it experiences transient accelerations perpendicular to the sheet. These accelerations trigger a secondary instability responsible for the amplification of spanwise thickness modulations of the sheet. This mechanism, called the ‘wavy corridor’, is responsible for the sheet free edge indentations from which liquid ligaments emerge and break, forming drops. The final drop size distribution is of a Gamma type characterized by a unique parameter independent of the operating conditions once drop sizes are normalized by their mean.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asare, H. R., Takahashi, R. K. & Hoffman, M. A. 1981 Liquid sheet jet experiments: comparison with linear theory. Trans. ASME: J. Fluids Engng 103, 395604.Google Scholar
Bayvel, L. & Orzechowski, Z. 1993 Liquid atomization. Taylor & Francis.Google Scholar
Bond, W. N. 1935 The surface tension of a moving water sheet. Proc. Phys. Soc. 47, 549558.CrossRefGoogle Scholar
Bremond, N. & Villermaux, E. 2005 Bursting thin liquid films. J. Fluid Mech. 524, 121130.CrossRefGoogle Scholar
Bremond, N. & Villermaux, E. 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.CrossRefGoogle Scholar
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229238.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.Google Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.Google Scholar
Dombrowski, N. & Johns, W. R. 1963 The aerodynamics instability and disintegration of viscous liquid sheets. Chem. Engng Sci. 18, 203214.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Dupré, A. 1868 Théorie mécanique de la chaleur. Ann. Chim. Phys. 11, 194.Google Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865929.CrossRefGoogle Scholar
Einsenklam, P. 1964 On ligament formation from spinning disks and cups. Chem. Engng Sci. 19, 693694.CrossRefGoogle Scholar
Fraser, R. P., Eisenklam, P., Dombrowski, N. & Hasson, D. 1962 Drop formation from rapidly moving liquid sheet. AIChE J. 8, 672680.CrossRefGoogle Scholar
de Gennes, P. G. 1996 Mechanics of soft interfaces. Faraday Disc. 104, 18.CrossRefGoogle Scholar
Hagerty, W. W. & Shea, J. F. 1955 A study of the stability of plane fluid sheets. J. Appl. Mech. 22, 509514.CrossRefGoogle Scholar
Heidmann, M. F., Priem, R. J. & Humphrey, J. C. 1957 A study of sprays formed by two impacting jets. NACA Tech. Note 3835.Google Scholar
von Helmholtz, H. 1868 On discontinuous movements of fluids. Phil. Mag. 36, 337346.Google Scholar
Huang, J. C. P. 1970 The break-up of axisymmetric liquid sheets. J. Fluid Mech. 43, 305319.CrossRefGoogle Scholar
James, A. J., Vukasinovic, B., Smith, M. K. & Glezer, A. 2003 Vibration-induced drop atomization and bursting. J. Fluid Mech. 476, 128.CrossRefGoogle Scholar
Keller, J. B. & Kolodner, I. 1954 Instability of liquid surfaces and the formation of drops. J. Appl. Phys. 25, 918921.CrossRefGoogle Scholar
Kelvin, Lord 1871 Hydrokinetic solutions and observations. Philo. Mag. 42, 362377.Google Scholar
Kim, I. & Sirignano, W. A. 2000 Three-dimensional wave distortion and disintegration of thin planar liquid sheets. J. Fluid Mech. 410, 147183.CrossRefGoogle Scholar
Lefebvre, A. H. 1989 Atomization and Sprays. Hemisphere.Google Scholar
Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.Google Scholar
Lozano, A., Garcia-Olivares, A. & Dopazo, C. 1998 The instability growth leading to a liquid sheet break up. Phys. Fluids 10, 21882197.CrossRefGoogle Scholar
Mansour, A. & Chigier, N. 1990 Disintegration of liquid sheets. Phys. Fluids A 2, 706719.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 a Fragmentation of stretched liquid ligaments. Phys. Fluids 16, 27322741.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 b On spray formation. J. Fluid Mech. 498, 73112.CrossRefGoogle Scholar
Mason, B. J. 1971 The Physics of Clouds. Clarendon.Google Scholar
Meier, G. E. A., Klopper, A. & Grabitz, G. 1992 The influence of kinematic waves on jet break down. Exps. Fluids 12, 173180.Google Scholar
Pandit, A. B. & Davidson, J. F. 1990 Hydrodynamics of the rupture of thin liquid films. J. Fluid Mech. 212, 1124.CrossRefGoogle Scholar
Park, J., Huh, K. Y., Li, X. & Renksizbulut, M. 2004 Experimental investigation on cellular breakup of a planar liquid sheet from an air-blast nozzle. Phys. Fluids 16, 625632.CrossRefGoogle Scholar
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Paris, Gauthiers Villars.Google Scholar
Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 4, 10.Google Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. R. Soc. Lond. 14, 170177.Google Scholar
Rayleigh, Lord 1891 Some applications of photography. Nature XLIV, 249254.CrossRefGoogle Scholar
Safran, S. A. 2003 Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Westview Press.Google Scholar
Savart, F. 1833 a Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi. Ann. de chim. 53, 337398.Google Scholar
Savart, F. 1833 b Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés. Ann. de chim. 55, 257310.Google Scholar
Savart, F. 1833 c Mémoire sur le choc d'une veine liquide lancée sur un plan circulaire. Ann. de chim. 54, 5687.Google Scholar
Simmons, H. C. 1977 a The correlation of drop-size distributions in fuel nozzle sprays. part i: the drop-size/volume-fraction distribution. J. Engng Power 7, 309314.Google Scholar
Simmons, H. C. 1977 b The correlation of drop-size distributions in fuel nozzle sprays. part ii: the drop-size/number distribution. J. Engng Power 7, 315319.Google Scholar
Squire, H. B. 1953 Investigation of the stability of a moving liquid film. Brit. J. Appl. Phys. 4, 167169.Google Scholar
Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their plane.i. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Taylor, G. I. 1959 a The dynamics of thin sheets of fluid ii. waves on fluid sheets. Proc. R. Soc. Lond. A 253, 296312.Google Scholar
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid iii. disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Taylor, G. I. 1960 Formation of thin flat sheets of water. Proc. R. Soc. Lond. A 259, 117.Google Scholar
Villermaux, E. & Clanet, C. 2002 Life of a flapping liquid sheet. J. Fluid Mech. 462, 341363.Google Scholar
Villermaux, E., Marmottant, P. & Duplat, J. 2004 Ligament-mediated spray formation. Phys. Rev. Let. 92, 074501.Google Scholar
Weihs, D. 1978 Stability of thin, radially moving liquid sheets. J. Fluid Mech. 87, 289298.Google Scholar
Worthington, A. M. 1908 A Study of Splashes. Longmans, Green & Co.Google Scholar
York, J. L., Stubbs, H. E. & Tek, M. R. 1953 The mechanism of disintegration of liquid sheets. Trans. ASME, pp. 1279–1286.Google Scholar