Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T16:49:34.311Z Has data issue: false hasContentIssue false

Asymptotic theory of high-aspect-ratio arched wings in steady incompressible flow

Published online by Cambridge University Press:  26 April 2006

G. Iosilevskii
Affiliation:
Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel

Abstract

Asymptotic theory of high-aspect-ratio wings in steady incompressible flow is extended to a case where the wing forms either an open or closed circular arc. The generalization is based on an integral formulation of the problem, which resembles the one used by Guermond (1990) for a plane curved wing. A second-order approximation is obtained for the load distribution on two model wings, one resembling that of a gliding parachute, and the other resembling a short duct.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, H. & Landahi, M. 1965 Aerodynamics of Wings and Bodies, pp. 23, 8198. 135136. Addison Wesley.
Baskin, V. E., Vildgrube, L. S., Vozhadayev, Y. S. & Maykapuar, G. I. 1976 Theory of lifting airscrew. NASA TT-F-823, pp. 312314.
Belotserkovskii, S. M. 1967 The Theory of Thin Wings in Subsonic Flow, pp. 4, 5, 50, 133. Plenum.
Cheng, H. K. 1978 Lifting line theory of oblique wings. AIAA J. 16, 12111213.Google Scholar
Friderichs, K. O. 1966 Special Topics in Fluid Dynamics, pp. 111119. Gordon and Breach.
Guermond, J. L. 1987 A new systematic formula for the asymptotic expansion of singular integrals. Z. Angew Math. phys. 38, 717729.Google Scholar
Guermond, J. L. 1990 generalized lifting-line theory for curved and swept wings. J. fluid Mech. 211, 497513.Google Scholar
Iosilevskii, Y. A. & Losilevskii, G. 1994 Mathematical foundations of an unsteady aerodynamic theory of rotary wings in axial flight. Part 2. An infinitesimally thin blade-wake approximation. TAE Rep. 725, Technion. pp. 5, 27, 30, 40, 5255, 61.
Kida, T. & Miyai, Y. 1978 An alternative treatment of lifting-line theory as a perturbation problem. Z. Angew. Math. Phys. 38, 717729.Google Scholar
Prandtl, L., Wiesselsberger, C. & Betz, A. 1921 Ergebnisse der Aerdynamichen Versuchsanstalt Zu Göttingen. München und Berlin: Lieferung and Oldenbourg.
Söhngen, H. 1939 Die Losungen der Integralgleihung und deren Anwendung in der Tragflugeltheorie. Math. Z. 45, 245264.Google Scholar
Thurber, J. K. 1965 An asymptotic method for determining the lift distribution of a swept-back wings of finite span. Commun. Pure Appl. Maths 18, 733756.Google Scholar
Dyke, Van M. 1975 Perturbation Methods in Fluid Mechanics, pp. 167176. The Parabolic Press.