Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-04T19:26:14.311Z Has data issue: false hasContentIssue false

Asymptotic theory for a bathtub vortex in a rotating tank

Published online by Cambridge University Press:  14 May 2014

M. R. Foster*
Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
*
Email address for correspondence: [email protected]

Abstract

Fluid entering the periphery of a cylindrical tank mounted on a rotating table is pumped inwards toward a central, floor drain by a potential vortex that is established in the fluid interior. We present here an asymptotic theory for small Rossby and Ekman numbers, including detailed solutions in the vortex core. Results for azimuthal velocity variation with radius agree quite well with the experiments of Andersen et al. (J. Fluid Mech., vol. 556, 2006, pp. 121–146), in spite of their free upper boundary. Modifications of the flow are presented in the instance that a short cylinder is place on the tank axis as in the work of Chen et al. (J. Fluid Mech., vol. 733, 2013, pp. 134–157). The overall flow structure found here is exactly that noted by both Andersen et al. and Chen et al.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J. & Lautrup, B. 2006 The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121146.Google Scholar
Barcilon, V. 1970 Some inertial modifications of the linear viscous theory of steady rotating fluid flows. Phys. Fluids 13, 537544.Google Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.Google Scholar
Bennetts, D. A. & Hocking, L. M. 1973 On nonlinear Ekman and Stewarson layers in a rotating fluid. Phil. Proc. R. Soc. A 333, 469489.Google Scholar
Bøhling, L., Andersen, A. & Fabre, D. 2010 Structure of a steady drain-hole vortex in a viscous fluid. J. Fluid Mech. 656, 177188.Google Scholar
Burggraf, O. R., Stewartson, K. & Belcher, R. 1971 Boundary layer induced by a potential vortex. Phys. Fluids 14, 18211833.CrossRefGoogle Scholar
Chen, Y. -C., Huang, S. -L., Li, A. -Y., Chu, C. -C. & Chang, C. -C. 2013 A bathtub vortex under the influence of a protruding cylinder in a rotating tank. J. Fluid Mech. 733, 134157.Google Scholar
Foster, M. R. 1972 Flow caused by the differential rotation of a right circular cylinder depression in one of two rapildy rotating parallel planes. J. Fluid Mech. 53, 647655.Google Scholar
Greenspan, H. P. 1965 On the general theory of contained rotating fluid motions. J. Fluid Mech. 22, 449462.Google Scholar
Hocking, L. M. 1967 Boundary and shear layers in a curved rotating pipe. J. Math. Phys. Sci. 1, 123136.Google Scholar
Lundgren, T. S. 1985 The vortical flow above the drain-hole in a rotating vessel. J. Fluid Mech. 155, 381412.Google Scholar
Moore, D. W. & Saffman, P. G. 1969 The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Phil. Trans. R. Soc. Lond. A 264, 597634.Google Scholar
Olver, F. W. J. 1954 Bessel functions of integer order. In Handbook of Mathematical Functions (ed. Abramowitz, M. & Stegun, I.), pp. 358433. National Bureau of Standards.Google Scholar
Shapiro, A. 1961 Vorticity. Part IV. National Centre for Fluid Mechanics Films.Google Scholar
Smith, F. T. & Stewartson, K. 1973 On slot injection into a supersonic laminar boundary layer. Proc. R. Soc. Lond. A 322, 122.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.Google Scholar
Stewartson, K. 1958 On rotating laminar boundary layers. In Boundary Layer Research, Symposium, Frieburg, 1957, p. 59. Springer.Google Scholar
Stewartson, K. 1966 On almost rigid rotations. Part 2. J. Fluid Mech. 26, 131144.Google Scholar
Walker, J. D. A. & Stewartson, K. 1974 Separation and the Taylor-column problem for a hemisphere. J. Fluid Mech. 66, 767789.Google Scholar
Wedemeyer, E. H. 1964 The unsteady flow within a spinning cylinder. J. Fluid Mech. 20, 383389.CrossRefGoogle Scholar
Yukimoto, S., Niino, H., Noguchi, T., Kimura, R. & Moulin, F. 2010 Structure of a bathtub vortex: importance of the bottom boundary layer. Theor. Comput. Fluid Dyn. 24, 323327.Google Scholar