Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T21:53:01.998Z Has data issue: false hasContentIssue false

Asymptotic solution for high-vorticity regions in incompressible three-dimensional Euler equations

Published online by Cambridge University Press:  17 January 2017

D. S. Agafontsev
Affiliation:
P. P. Shirshov Institute of Oceanology, Moscow 117218, Russia Novosibirsk State University, Novosibirsk 630090, Russia
E. A. Kuznetsov
Affiliation:
Novosibirsk State University, Novosibirsk 630090, Russia P. N. Lebedev Physical Institute, Moscow 119991, Russia
A. A. Mailybaev*
Affiliation:
Instituto Nacional de Matemática Pura e Aplicada – IMPA, Rio de Janeiro 22460-320, Brazil
*
Email address for correspondence: [email protected]

Abstract

Incompressible three-dimensional Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work, we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This solution combines a shear flow aligned with an asymmetric straining flow, and is characterized by a single asymmetry parameter and an arbitrary transversal vorticity profile. The analysis is based on detailed comparison with numerical simulations performed using a pseudospectral method in anisotropic grids of up to $972\times 2048\times 4096$.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agafontsev, D. S., Kuznetsov, E. A. & Mailybaev, A. A. 2015 Development of high vorticity structures in incompressible 3D Euler equations. Phys. Fluids 27, 085102.CrossRefGoogle Scholar
Brachet, M. E., Meneguzzi, M., Vincent, A., Politano, H. & Sulem, P. L. 1992 Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows. Phys. Fluids A 4, 28452854.Google Scholar
Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171199.Google Scholar
Bustamante, M. D. & Brachet, M. 2012 Interplay between the Beale–Kato–Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem. Phys. Rev. E 86 (6), 066302.Google ScholarPubMed
Chae, D. 2008 Incompressible Euler equations: the blow-up problem and related results. In Handbook of Differential Equations: Evolutionary Equation (ed. Dafermos, C. M. & Pokorny, M.), vol. 4, pp. 155. Elsevier.Google Scholar
Cleveland, W. S., Devlin, S. J. & Grosse, E. 1988 Regression by local fitting: methods, properties, and computational algorithms. J. Econom. 37 (1), 87114.CrossRefGoogle Scholar
Gibbon, J. D. 2008 The three-dimensional Euler equations: where do we stand? Physica D 237 (14–17), 18941904.Google Scholar
Gibbon, J. D., Fokas, A. S. & Doering, C. R. 1999 Dynamically stretched vortices as solutions of the 3D Navier–Stokes equations. Physica D 132 (4), 497510.Google Scholar
Hou, T. Y. 2009 Blow-up or no blow-up? a unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations. Acta Numerica 18, 277346.Google Scholar
Hou, T. Y. & Li, R. 2007 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226 (1), 379397.Google Scholar
Kerr, R. M. 2013 Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech. 729, R2.Google Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 2193.Google Scholar
Maekawa, Y. 2009 On the existence of Burgers vortices for high Reynolds numbers. J. Math. Anal. Appl. 349 (1), 181200.Google Scholar
Majda, A. J. & Bertozzi, A. L. 2002 Vorticity and Incompressible Flow. Cambridge University Press.Google Scholar
Ohkitani, K. 2008 A geometrical study of 3D incompressible Euler flows with Clebsch potentials – a long-lived Euler flow and its power-law energy spectrum. Physica D 237 (14), 20202027.Google Scholar
Prochazka, A. & Pullin, D. I. 1998 Structure and stability of non-symmetric Burgers vortices. J. Fluid Mech. 363, 199228.CrossRefGoogle Scholar
Pullin, D. I. & Saffman, P. G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30 (1), 3151.Google Scholar
Pumir, A. & Siggia, E. 1990 Collapsing solutions to the 3-D Euler equations. Phys. Fluids A 2, 220241.CrossRefGoogle Scholar