Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:44:47.109Z Has data issue: false hasContentIssue false

Approximating the equations governing rotating fluid motion: a case study based on a quasi-geostrophic model

Published online by Cambridge University Press:  21 April 2006

A. A. White
Affiliation:
Meteorological Office, London Road, Bracknell, Berkshire, RG12 2SZ, UK

Abstract

Nearly all theoretical work in geophysical fluid dynamics is based on approximate forms of the equations of motion, but the best ground-rules for deriving such approximate forms are not clear. Traditionally, scale analysis and global energy conservation have been the guiding principles. The existence of analogues of Lagrangian potential vorticity conservation has been seen as at least aesthetically desirable, but consequent improvements in practical accuracy have not often been demonstrated. A simple case study is here offered in order to illuminate these issues. The Type 1 quasi-geostrophic model (QG1) is adopted as a reference formulation and several approximations to it are examined. They are formally accurate to zeroth or first-order in a Burger number B, but may include some higher-order terms and may imply analogues of global energy conservation and Lagrangian potential vorticity conservation. The approximate forms are all characterized by exclusion of the external Rossby mode, and each is related to a certain geostrophic formulation which is familiar in dynamical oceanography. The various approximations are assessed by examining their behaviour in three test problems which may be treated analytically: finite-amplitude internal Rossby wave propagation, zonal flow stability criteria and linearized internal free waves on baroclinic zonal flows. Two of the problems yield support for the hypothesis that the practical accuracy of an approximation may be improved by including higher-order terms in such a way that a potential vorticity conservation analogue is implied. The validity of this hypothesis in the QG1 case could be further investigated by solving more complicated test problems. Its general applicability cannot of course be claimed on the basis of a single case study; but the results obtained here afford evidence in its favour.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, J. R. 1977 Q. J. R. Met. Soc. 103, 397430.
Bennett, A. F. & Kloeden, P. E. 1981 Q. J. R. Met. Soc. 107, 121136.
Blumen, W. 1978 J. Atmos. Sci. 35, 13141318.
Boville, B. A. 1980 J. Atmos. Sci. 37, 14131423.
Bretherton, F. P. 1966 Q. J. R. Met. Soc. 92, 325334.
Charney, J. G. 1962 In Proc. Intl Symp. on Numerical Weather Prediction, p. 131 Japan Meteorological Agency.
Derome, J. 1984 Tellus 36A, 313–319.
Eliassen, A. 1984 Q. J. R. Met. Soc. 110, 112.
FjØrtoft, R. 1962 In Proc. Intl Symp. on Numerical Weather Prediction, p. 153 Japan Meteorological Agency.
Gent, P. R. & McWilliams, J. C. 1983 Dyn. Atmos. Oceans 7, 167183.
Gent, P. R. & McWilliams, J. C. 1984 Tellus 36A, 166–171.
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic.
Green, J. S. A. 1960 Q. J. R. Met. Soc. 86, 237251.
Green, J. S. A. 1970 Q. J. R. Met. Soc. 96, 157185.
Haltiner, G. J. 1971 Numerical Weather Prediction. Wiley.
Hollmann, G. 1964 Arch. Met. Geophys. Bioklim. 14A, 1–13.
Hoskins, B. J. 1975 J. Atmos. Sci. 32, 233242.
Kuo, H. L. 1959 J. Met. 16, 524534.
Kuo, H. L. 1972 Geophys. Pure Appl. 96, 171175.
Kuo, H. L. 1973 Adv. Appl. Mech. 13, 247330.
Lorenz, E. N. 1960 Tellus 12, 364373.
Lorenz, E. N. 1967 The Nature and Theory of the General Circulation of the Atmosphere. WMO.
Lynch, P. 1979 Geophys. Astrophys. Fluid Dyn. 13, 107124.
Mcwilliams, J. C. & Gent, P. R. 1980 J. Atmos. Sci. 37, 16571678.
Mitchell, H. L. & Derome, J. 1983 J. Atmos. Sci. 40, 25222536.
Pedlosky, J. 1964 J. Atmos. Sci. 21, 201219.
Pedlosky, J. 1977 J. Atmos. Sci. 34, 18981912.
Pedlosky, J. 1979 Geophysical Fluid Dynamics. Springer.
Phillips, N. A. 1963 Rev. Geophys. 1, 123176.
Ripa, P. 1981 Am. Inst. Phys. Proc. 76, 281306.
Salmon, R. 1982 Am. Inst. Phys. Proc. 88, 127135.
Salmon, R. 1983 J. Fluid Mech. 132, 431444.
Salmon, R. 1985 J. Fluid Mech. 153, 461477.
Welander, P. 1961 Tellus 13, 140155.
White, A. A. 1982 J. Atmos. Sci. 39, 21072118.
White, A. A. 1986a Meteorological Office, Geophysical Fluid Dynamics Branch, Internal Rep. IR86/1. Copies obtainable from author.
White, A. A. 1986b Q. J. R. Met. Soc. 122, 749773.
Wiin-Nielsen, A. 1961 Tellus 13, 320333.
Wiin-Nielsen, A. 1962 Monthly Weather Rev. 90, 311323.
Wiin-Nielsen, A. 1968 Rev. Geophys. 6, 559579.
Williams, G. P. & Yamagata, T. 1984 J. Atmos. Sci. 41, 453478.