Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T09:22:17.898Z Has data issue: false hasContentIssue false

Anomalous pressure drop behaviour of mixed kinematics flows of viscoelastic polymer solutions: a multiscale simulation approach

Published online by Cambridge University Press:  17 July 2009

ANANTHA P. KOPPOL
Affiliation:
Department of Energy, Environmental and Chemical Engineering, Washington University, St Louis, MO 63130, USA
RADHAKRISHNA SURESHKUMAR
Affiliation:
Department of Energy, Environmental and Chemical Engineering, Washington University, St Louis, MO 63130, USA
ARASH ABEDIJABERI
Affiliation:
Materials Research and Innovation Laboratory (MRAIL) Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
BAMIN KHOMAMI*
Affiliation:
Materials Research and Innovation Laboratory (MRAIL) Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
*
Email address for correspondence: [email protected]

Abstract

A long-standing unresolved problem in non-Newtonian fluid mechanics, namely, the relationship between friction drag and flow rate in inertialess complex kinematics flows of dilute polymeric solutions is investigated via self-consistent multiscale flow simulations. Specifically, flow of a highly elastic dilute polymeric solution, described by first principles micromechanical models, through a 4:1:4 axisymmetric contraction and expansion geometry is examined utilizing our recently developed highly efficient multiscale flow simulation algorithm (Koppol, Sureshkumar & Khomami, J. Non-Newtonian Fluid Mech., vol. 141, 2007, p. 180). Comparison with experimental measurements (Rothstein & McKinley, J. Non-Newtonian Fluid Mech., vol. 86, 1999, p. 61) shows that the pressure drop evolution as a function of flow rate can be accurately predicted when the chain dynamics is described by multi-segment bead-spring micromechanical models that closely capture the transient extensional viscosity of the experimental fluid. Specifically, for the first time the experimentally observed doubling of the dimensionless excess pressure drop at intermediate flow rates is predicted. Moreover, based on an energy dissipation analysis it has been shown that the variation of the excess pressure drop with the flow rate is controlled by the flow-microstructure coupling in the extensional flow dominated region of the flow. Finally, the influence of the macromolecular chain extensibility on the vortex dynamics, i.e. growth of the upstream corner vortex at low chain extensibility or the shrinkage of the upstream corner vortex coupled with the formation of a lip vortex that eventually merges with the upstream corner vortex at high chain extensibility is elucidated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Mubaiyedh, U. A., Sureshkumar, R. & Khomami, B. 2000 Linear stability of viscoelastic Taylor–Couette flow: influence of fluid rheology and energetics. J. Rheol. 44 (5), 11211138.CrossRefGoogle Scholar
Alves, M. A., Oliveira, P. J. & Pinho, F. T. 2004 On the effect of contraction ratio in viscoelastic flow through abrupt contractions. J. Non-Newtonian Fluid Mech. 122, 117130.CrossRefGoogle Scholar
Bajaj, M., Bhat, P. P., Praskash, J. R. & Pasquali, M. 2006 Multiscale simulation of viscoelastic free surface flows. J. Non-Newtonian Fluid Mech. 140, 87107.CrossRefGoogle Scholar
Binding, D. M., Phillips, P. M. & Phillips, T. N. 2006 Contraction/expansion flows: the pressure drop related issues. J. Non-Newtonian Fluid Mech. 137, 3138.CrossRefGoogle Scholar
Binding, D. M. & Walters, K. 1988 On the use of flow through a contraction in estimating the extensional viscosity of mobile polymer solutions. J. Non-Newtonian Fluid Mech. 30, 233250.CrossRefGoogle Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, vol. 2. Wiley.Google Scholar
Boger, D. V. 1987 Viscoelastic flows through contractions. Annu. Rev. Fluid Mech. 19, 157182.CrossRefGoogle Scholar
Boger, D. V. & Binnington, R. J. 1990 Circular entry flows in fluid M1. J. Non-Newtonian Fluid Mech. 35, 339360.CrossRefGoogle Scholar
Boger, D. V. & Binnington, R. J. 1994 Experimental removal of the re-entrant corner singularity in tubular entry flows. J. Rheol. 38, 333349.CrossRefGoogle Scholar
Brooks, A. N. & Hughes, T. J. R. 1982 Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp. Methods Appl. Mech. Engng 32, 199259.CrossRefGoogle Scholar
Cartalos, U. & Piau, J. M. 1992 Creeping flow regimes of low concentration polymer solutions in thick solvents through an orifice die. J. Non-Newtonian Fluid Mech. 45, 231285.CrossRefGoogle Scholar
Coates, P. J., Armstrong, R. C. & Brown, R. A. 1992 Calculation of steady-state viscoelastic flow through axisymmetric contractions with the EEME formulation. J. Non-Newtonian Fluid Mech. 42, 141188.CrossRefGoogle Scholar
Cogswell, F. N. 1972 Converging flow of polymer melts in extrusion dies. Polym. Engng Sci. 12, 6473.CrossRefGoogle Scholar
Eisenbrand, G. D. & Goddard, J. D. 1982 Birefringence and pressure drop for the orifice flow of a polymer solution. J. Non-Newtonian Fluid Mech. 11, 3752.CrossRefGoogle Scholar
Grillet, A. M., Yang, B., Khomami, B. & Sahqfeh, E. G. 1999 Modelling of viscoelastic lid driven cavity flow using finite element simulations. J. Non-Newtonian Fluid Mech. 88, 99131.CrossRefGoogle Scholar
Guenette, R. & Fortin, M. 1995 A new mixed finite element method for computing viscoelastic flows. J. Non-Newtonian Fluid Mech. 60, 2752.CrossRefGoogle Scholar
Halin, P., Lielens, G., Keunings, R. & Legat, V. 1998 The Lagrangian particle method for macroscopic and micro–macro viscoelastic flow computations. J. Non-Newtonian Fluid Mech. 79, 387403.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Hu, X., Ding, Z. & Lee, L. J. 2005 Simulation of two-dimensional transient visoelastic flow using the CONNFFESSIT approach. J. Non-Newtonian Fluid Mech. 127, 107122.CrossRefGoogle Scholar
Hua, C. C. & Schieber, J. D. 1998 Viscoelastic flow through fibrous media using the CONNFFESSIT approach. J. Rheol. 42 (3), 477491.CrossRefGoogle Scholar
Hulsen, M. A., van Heel, A. P. G. & van den Brule, B. H. A. A. 1997 Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newtonian Fluid Mech. 70, 79101.CrossRefGoogle Scholar
James, D. F. & Chandler, G. M. 1990 Measurement of the extensional viscosity of M1 in a converging channel rheometer. J. Non-Newtonian Fluid Mech. 35, 445458.CrossRefGoogle Scholar
Keiller, R. A. 1993 Entry-flow calculations for the Oldroyd-B and FENE equations. J. Non-Newtonian Fluid Mech. 46, 143178.CrossRefGoogle Scholar
Keunings, R. 2004 Micro–macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory. In Rheology Reviews (ed. Binding, D. M. & Walters, K.), pp. 6798. British Society of Rheology.Google Scholar
Khomami, B., Talwar, K. K. & Ganpule, H. K. 1994 A comparative study of higher and lower order finite element techniques for computation of viscoelastic flows. J. Rheol. 38, 255289.CrossRefGoogle Scholar
Kim, J. M., Kim, C., Kim, J. H., Chung, C., Ahn, K. H. & Lee, S. J. 2005 High resolution finite element simulation of 4:1 planar contraction flow of a viscoelastic fluid. J. Non-Newtonian Fluid Mech. 129, 2337.CrossRefGoogle Scholar
Koppol, A. P. 2007 Dynamics and frictional drag behaviour of viscoelastic flows in complex geometries: a multiscale simulation approach. DSc thesis, Washington University, St. Louis.Google Scholar
Koppol, A. P., Sureshkumar, R. & Khomami, B. 2007 An efficient algorithm for multiscale flow simulation of dilute polymeric solutions using bead-spring chains. J. Non-Newtonian Fluid Mech. 141, 180192.CrossRefGoogle Scholar
Larson, R. G. 2005 The rheology of dilute solutions of flexible polymers: progress and problems. J. Rheol. 49, 170.CrossRefGoogle Scholar
Laso, M. & Öttinger, H. C. 1993 Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach. J. Non-Newtonian Fluid Mech. 47, 120.CrossRefGoogle Scholar
Laso, M., Picasso, M. & Öttinger, H. C. 1997 two-dimensional time dependent viscoelastic flow calculations using CONNFFESSIT. AIChE J. 43, 877892.CrossRefGoogle Scholar
Lawler, J. V., Muller, S. J., Brown, R. A. & Armstrong, R. C. 1986 Laser Doppler velocimetry measurements of velocity fields and transitions in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 20, 5192.CrossRefGoogle Scholar
Lee, A. G., Shaqfeh, E. S. G. & Khomami, B. 2002 A study of viscoelastic free surface flows by the finite element method: Hele–Shaw and slot coating flows. J. Non-Newtonian Fluid Mech. 108, 327362.CrossRefGoogle Scholar
Li, J., Burghardt, W. R., Yang, B. & Khomami, B. 1998 Flow birefringence and computational studies of a shear thinning polymer solution in axisymmetric stagnation flow. J. Non-Newtonian Fluid Mech. 74, 151193.CrossRefGoogle Scholar
Li, J., Burghardt, W. R., Yang, B. & Khomami, B. 2000 Birefringence and computational studies of a polystyrene Boger fluid in axisymmetric stagnation flow. J. Non-Newtonian Fluid Mech. 91, 189220.CrossRefGoogle Scholar
McKinley, G. H., Raiford, W. P., Brown, R. A. & Armstrong, R. C. 1991 Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions. J. Fluid Mech. 223, 411456.CrossRefGoogle Scholar
Mompean, G. & Deville, M. 1997 Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction. J. Non-Newtonian Fluid Mech. 72, 253279.CrossRefGoogle Scholar
Nigen, S. & Walters, K. 2002 Viscoelastic contraction flows: comparison of axisymmetric and planar configurations. J. Non-Newtonian Fluid Mech. 102, 343359.CrossRefGoogle Scholar
Oliveira, M. S. N., Oliveira, P. J., Pinho, F. T. & Alves, M. A. 2007 Effect of contraction ratio upon viscoelastic flow in contractions: the axisymmetric case. J. Non-Newtonian Fluid Mech. 147, 92108.CrossRefGoogle Scholar
Öttinger, H. C., van den Brule, B. H. A. A. & Hulsen, M. A. 1997 Brownian configuration fields and variance reduce CONNFFESSIT. J. Non-Newtonian Fluid Mech. 70, 255261.CrossRefGoogle Scholar
Philips, T. N. & Smith, K. D. 2006 A spectral element approach to the simulation of viscoelastic flows. J. Non-Newtonian Fluid Mech. 138, 98110.CrossRefGoogle Scholar
Purnode, B. & Crochet, M. J. 1996 Flows of polymer solutions through contractions. Part 1: flows of polyacrylamide solutions through planar contractions. J. Non-Newtonian Fluid Mech. 65, 269289.CrossRefGoogle Scholar
Rallison, J. M. & Hinch, E. J. 2004 The flow of an Oldroyd fluid past a re-entrant corner: the downstream boundary layer. J. Non-Newtonian Fluid Mech. 116, 141162.CrossRefGoogle Scholar
Renardy, M. 1997 Re-entrant corner behaviour of the PTT fluid. J. Non-Newtonian Fluid Mech. 69, 99104.CrossRefGoogle Scholar
Rothstein, J. P. & McKinley, G. H. 1999 Extensional flow of a polystyrene Boger fluid through a 4:1:4 contraction/expansion. J. Non-Newtonian Fluid Mech. 86, 6188.CrossRefGoogle Scholar
Rothstein, J. P. & McKinley, G. H. 2001 The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J. Non-Newtonian Fluid Mech. 98, 3363.CrossRefGoogle Scholar
Rothstein, J. P. & McKinley, G. H. 2002 Inhomogeneous transient uniaxial extensional rheometry. J. Rheol. 46, 14191443.CrossRefGoogle Scholar
Shaqfeh, E. S. G. 2005 The dynamics of single-molecule DNA in flow. J. Non-Newtonian Fluid Mech. 130, 128.CrossRefGoogle Scholar
Smith, M. D., Armstrong, R. C., Brown, R. A. & Sureshkumar, R. 2000 Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations. J. Non-Newtonian Fluid Mech. 93, 203244.CrossRefGoogle Scholar
Somasi, M. & Khomami, B. 2000 Linear stability and dynamics of viscoelastic flows using time-dependent stochastic simulation techniques. J. Non-Newtonian Fluid Mech. 93, 339362.CrossRefGoogle Scholar
Somasi, M. & Khomami, B. 2001 A new approach for studying the hydrodynamic stability of fluids with microstructure. Phys. Fluids 13, 18111814.CrossRefGoogle Scholar
Somasi, M., Khomami, B., Woo, N. J., Hur, J. S. & Shaqfeh, E. S. G. 2002 Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues. J. Non-Newtonian Fluid Mech. 108, 227255.CrossRefGoogle Scholar
Szabo, B. & Babuska, I. 1987 Finite Element Analysis. Wiley.Google Scholar
Szabo, P., Rallison, J. M. & Hinch, E. J. 1997 Start up of flow of a FENE-fluid through a 4:1:4 constriction in a tube. J. Non-Newtonian Fluid Mech. 72, 7386.CrossRefGoogle Scholar
Talwar, K. K., Ganpule, H. K. & Khomami, B. 1994 A note on the selection of spaces in computation of viscoelastic flows using the hp-finite element method. J. Non-Newtonian Fluid Mech. 52, 293307.CrossRefGoogle Scholar
Talwar, K. K. & Khomami, B. 1992 Application of higher order finite element methods to viscoelastic flow in porous media. J. Rheol. 36, 13771416.CrossRefGoogle Scholar
Wapperom, P., Keunings, R. & Legat, V. 2000 The backward-tracking Lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91, 273295.CrossRefGoogle Scholar
Wiest, J. M. & Tanner, R. I. 1989 Rheology of bead-nonlinear spring chain macromolecules. J. Rheol. 33 (2), 281316.CrossRefGoogle Scholar
Yang, B. & Khomami, B. 1999 Simulation of sedimentation of a sphere in a viscoelastic fluid using molecular based constitutive models. J. Non-Newtonian Fluid Mech. 82, 429452.CrossRefGoogle Scholar