Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T17:12:17.408Z Has data issue: false hasContentIssue false

Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves

Published online by Cambridge University Press:  22 February 2010

PER A. MADSEN*
Affiliation:
Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
HEMMING A. SCHÄFFER
Affiliation:
Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
*
Email address for correspondence: [email protected]

Abstract

In the literature it has so far been common practice to consider solitary waves and N-waves (composed of solitary waves) as the appropriate model of tsunamis approaching the shoreline. Unfortunately, this approach is based on a tie between the nonlinearity and the horizontal length scale (or duration) of the wave, which is not realistic for geophysical tsunamis. To resolve this problem, we first derive analytical solutions to the nonlinear shallow-water (NSW) equations for the runup/rundown of single waves, where the duration and the wave height can be specified separately. The formulation is then extended to cover leading depression N-waves composed of a superposition of positive and negative single waves. As a result the temporal variations of the runup elevation, the associated velocity and breaking criteria are specified in terms of polylogarithmic functions. Finally, we consider incoming transient wavetrains generated by monopole and dipole disturbances in the deep ocean. The evolution of these wavetrains, while travelling a considerable distance over a constant depth, is influenced by weak dispersion and is governed by the linear Korteweg–De Vries (KdV) equation. This process is described by a convolution integral involving the Airy function. The runup on the plane sloping beach is then determined by another convolution integral involving the incoming time series at the foot of the slope. A good agreement with numerical model results is demonstrated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: SchäfferWaves, Sortedam Dossering 59 D st., DK-2100 Copenhagen Ø, Denmark. Email address: [email protected]

References

REFERENCES

Battjes, J. A. 1974 Surf similarity. In Proceedings of the Fourteenth International Coastal Engineering Conference, vol. 1, pp. 466–480. ASCE.CrossRefGoogle Scholar
Briggs, M. J., Synolakis, C. E., Harkins, G. S. & Green, D. R. 1995 Laboratory experiments of tsunami runup on a circular island. Pure Appl. Geophys. 144 (3/4), 569593.CrossRefGoogle Scholar
Carrier, G. F. 1971 The dynamics of tsunamis. In Mathematical Problems in the Geophysical Sciences. Proceedings of the Sixth Summer Seminar on Applied Mathematics, Rennselar Polytechnic Institute, Troy, N.Y. 1970. American Mathematical Society.Google Scholar
Carrier, G. F. & Greenspan, H. P. 1958 Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 17, 97110.CrossRefGoogle Scholar
Carrier, G. F., Wu, T. T. & Yeh, H. 2003 Tsunami runup and drawdown on a plane beach, J. Fluid Mech. 475, 7999.CrossRefGoogle Scholar
Didenkulova, I. I., Kurkin, A. A. & Pelinovsky, E. N. 2007 Run-up of solitary waves on slopes with different profiles. Atmos. Ocean. Phys. 43 (3), 384390.CrossRefGoogle Scholar
Didenkulova, I. I., Zahibo, N., Kurkin, A. A., Levin, B. V., Pelinovsky, E. N. & Soomere, T. 2006 Runup of nonlinearly deformed waves on a coast. Dokl. Earth Sci. 411 (8), 12411243.CrossRefGoogle Scholar
Fuhrman, D. R. & Bingham, H. B. 2004 Numerical solutions of fully nonlinear and highly dispersive Boussinesq equations in two horizontal dimensions. Intl J. Numer. Methods Fluids 44, 231255.CrossRefGoogle Scholar
Fuhrman, D. R. & Madsen, P. A. 2008 Simulation of nonlinear wave runup with a high-order Boussinesq model. Coast. Engng 55 (2), 139154.CrossRefGoogle Scholar
Geist, E. L. 1999 Local tsunamis and earthquake source parameters. Adv. Geophys. 39, 117209.CrossRefGoogle Scholar
Geist, E. L. & Yoshioka, S. 1996 Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadia Margin. Nat. Hazards 13, 151177.CrossRefGoogle Scholar
Gjevik, B. & Pedersen, G. 1981 Run-up of long waves on an inclined plane. Preprint Series Institute of Mathematics University of Oslo, 25 pp.Google Scholar
Goring, D. G. 1978 Tsunamis – the propagation of long waves onto a shelf. Tech. Rep. Kh-R-38. W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology.Google Scholar
Green, G. 1838 On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc. 6, 457462.Google Scholar
Jensen, A., Pedersen, G. K. & Wood, D. J. 2003 An experimental study of wave run-up at a steep beach. J. Fluid Mech. 486, 161188.CrossRefGoogle Scholar
Kânoğlu, U. 2004 Nonlinear evolution and runup-rundown of long waves over a sloping beach. J. Fluid Mech. 513, 363372.CrossRefGoogle Scholar
Keller, J. B. & Keller, H. B. 1964 Water wave run-up on a beach. ONR Research Rep. Contract NONR-3828(00). Department of the Navy, Washington, DC, p. 40.Google Scholar
Kelly, J. J. 2006 Graduate Mathematical Physics. Wiley-VCH Verlag, p. 466.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Levinson, N. & Redheffer, R. M. 1970 Complex Variables. Holden-Day, p. 430.Google Scholar
Lewin, L. 1980 Polylogarithms and Associated Functions. North-Holland.Google Scholar
Lewin, L. 1991 Structural Properties of Polylogarithms. American Mathematical Society.CrossRefGoogle Scholar
Lewy, H. 1946 Water waves on sloping beaches. Bull. Am. Math. Soc. 52, 737755.CrossRefGoogle Scholar
Li, Y. & Raichlen, F. 2001 Solitary wave runup on plane slopes. J. Waterway Port Coast. Ocean Engng 127 (1), 3344.CrossRefGoogle Scholar
Li, Y. & Raichlen, F. 2002 Non-breaking and breaking solitary wave run-up. J. Fluid Mech. 456, 295318.CrossRefGoogle Scholar
Li, Y. & Raichlen, F. 2003 Energy balance model for breaking solitary wave run-up. J. Waterway Port Coast. Ocean Engng 47, 4759.CrossRefGoogle Scholar
Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kânoğlu, U. & Synolakis, C. E. 1995 Runup of solitary waves on a circular island. J. Fluid Mech. 302, 259285.CrossRefGoogle Scholar
Lynett, P., Sitanggang, K. I., Fernández, E. J. R., Wang, X., Zhou, H., Liu, P. L.-F., Mercado, A., Teng, M. & von Hillebrandt-Andrade, C. G. 2008 Experimental investigation into three-dimensional long wave breaking. In Proceedings of the Thirty-First International Conference on Coastal Engineering, pp. 1326–1336. Hamburg, ASCE.Google Scholar
Madsen, P. A., Bingham, H. B. & Liu, H. 2002 A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech. 462, 130.CrossRefGoogle Scholar
Madsen, P. A. & Fuhrman, D. R. 2008 Runup of tsunamis and long waves in terms of surf-similarity. Coast. Engng 55 (3), 209224.CrossRefGoogle Scholar
Madsen, P. A., Fuhrman, D. R. & Schäffer, H. A. 2008 On the solitary wave paradigm for tsunamis. J. Geophys. Res. 113, C12012, 122.CrossRefGoogle Scholar
Madsen, P. A., Fuhrman, D. R. & Wang, B. 2006 A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Engng 53, 487504.CrossRefGoogle Scholar
Mathews, J. H. & Howell, R. W. 2001 Complex Analysis for Mathematics and Engineering. Jones and Bartlett, p. 600.Google Scholar
Mei, C. C., Yue, D. K.-P. & Stiassnie, M. 2005 Theory and Applications of Ocean Surface Waves. World Scientific.Google Scholar
Pelinovsky, E. N. & Mazova, R. K. 1992 Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Nat. Hazards 6, 227249.CrossRefGoogle Scholar
Synolakis, C. E. 1987 The runup of solitary waves. J. Fluid Mech. 185, 523545.CrossRefGoogle Scholar
Synolakis, C. E. & Bernard, E. N. 2006 Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 364, 22312265.CrossRefGoogle ScholarPubMed
Synolakis, C. E. & Deb, M. K. 1988 On the maximum runup of cnoidal waves. In Proceedings of ASCE, 21st Conf. Coastal Engineering, Costa del Sol, Malaga, Spain, pp. 553565.Google Scholar
Synolakis, C. E., Deb, M. K. & Skjelbreia, J. E. 1988 The anomaleous behaviour of the runup of cnoidal waves. Phys. Fluids 31 (1), 35.CrossRefGoogle Scholar
Synolakis, C. E., Okal, E. A. & Bernard, E. N. 2005 The megatsunami of December 26, 2004. Bridge Natl Acad. Engng 35 (2), 2635.Google Scholar
Tadepalli, S. & Synolakis, C. E. 1994 The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. A 445, 99112.Google Scholar
Tadepalli, S. & Synolakis, C. E. 1996 Model for the leading waves of tsunamis, Phys. Rev. Lett. 77, 21412145.CrossRefGoogle ScholarPubMed
Tonkin, S., Yeh, H., Kato, F. & Sato, S. 2003 Tsunami scour around a cylinder. J. Fluid Mech 496, 165192.CrossRefGoogle Scholar
Weisstein, E. W. 2005 Analytic continuation and polylogarithm. Mathworld - A Wolfram Web Resource.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Pure and Applied Mathematics, Wiley-Interscience.Google Scholar
Wood, D. C. 1992 The computation of Polylogarithms. Tech. Rep. 15–92. University of Kent Computing Laboratory, University of Kent, Canterbury, UK, p. 20.Google Scholar
Yeh, H., Liu, P. L.-F., Briggs, M. & Synolakis, C. E. 1994 Propagation and amplification of tsunamis at coastal boundaries. Nature 372, 353355.CrossRefGoogle Scholar