Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-21T10:50:39.708Z Has data issue: false hasContentIssue false

Analytical solution for two-phase flow within and outside a sphere under pure shear

Published online by Cambridge University Press:  13 June 2018

Abstract

This article presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consists of an interconnected, load-bearing, creeping matrix phase and an inviscid, interstitial fluid phase. This article outlines techniques for building analytical solutions for velocity, pressure and compaction within each domain, subject to boundary conditions of continuity of matrix velocity, normal traction, normal pressure gradient, and compaction at the interface between the two domains. The solutions, valid over a short period of time in the limit of small fluid fraction, are strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. Compaction and pressure drop across the interface, evaluated at the poles and the equator, are strongly dependent on the ratio of matrix shear viscosities in the two domains. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of ${\sim}80$, after which the velocity within the sphere becomes relatively insensitive to the increase in the viscosity ratio.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alisic, L., Rudge, J. F., Katz, R. F., Wells, G. N. & Rhebergen, S. 2014 Compaction around a rigid, circular inclusion in partially molten rock. J. Geophys. Res.: Solid Earth 119, 59035920.CrossRefGoogle Scholar
Arfken, G. B. & Weber, H. J. 1995 Mathematical Methods for Physicists, 4th edn. Academic Press.Google Scholar
Barcilon, V. & Lovera, O. M. 1989 Solitary waves in magma dynamics. J. Fluid Mech. 204, 121133.Google Scholar
Bercovici, D., Ricard, Y. & Schubert, G. 2001a A two-phase model for compaction and damage. Part 1. General theory. J. Geophys. Res. B 106 (5), 88878906.Google Scholar
Bercovici, D., Ricard, Y. & Schubert, G. 2001b A two-phase model for compaction and damage. Part 3. Applications to shear localization and plate boundary formation. J. Geophys. Res. B 106 (5), 89258939.Google Scholar
Bower, D. J., Wicks, J. K., Gurnis, M. & Jackson, J. M. 2011 A geodynamic and mineral physics model of a solid-state ultralow-velocity zone. Earth Planet. Sci. Lett. 303 (3–4), 193202.CrossRefGoogle Scholar
Drew, D. A. 1971 Averaged field equations for two-phase media. Stud. Appl. Maths 50, 133166.Google Scholar
Drew, D. A. 1983 Averaged field equations for two-phase flow. Annu. Rev. Fluid Mech. 15, 261291.Google Scholar
Drombosky, T. W. & Hier-Majumder, S. 2015 Development of anisotropic texture in deforming partially molten aggregates. Part 1. Theory and fast multipole boundary elements method. J. Geophys. Res. 120.Google Scholar
Gunde, A. C., Bera, B. & Mitra, S. K. 2010 Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations. Energy 35 (12), 52095216.CrossRefGoogle Scholar
Handy, M. R., Wissing, S. B. & Streit, L. E. 1999 Frictional-viscous flow in mylonite with varied bimineralic composition and its effect on lithospheric strength. Tectonophysics 303 (1–4), 175191.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Kluwer.CrossRefGoogle Scholar
Hier-Majumder, S. 2008 Influence of contiguity on seismic velocities of partially molten aggregates. J. Geophys. Res. 113 (B12), B12205.Google Scholar
Hier-Majumder, S. 2011 Development of anisotropic mobility during two-phase flow. Geophys. J. Intl 186, 5968.Google Scholar
Hier-Majumder, S. 2014 Melt redistribution by pulsed compaction within ultralow velocity zones. Phys. Earth Planet. Intl 229, 134143.Google Scholar
Hier-Majumder, S. & Abbott, M. E. 2010 Influence of dihedral angle on the seismic velocities in partially molten rocks. Earth Planet. Sci. Lett. 299 (1–2), 2332.CrossRefGoogle Scholar
Hier-Majumder, S. & Drombosky, T. W. 2015 Development of anisotropic texture in deforming partially molten aggregates. Part 2. Implications for the lithosphere–asthenosphere boundary. J. Geophys. Res. 120, 764777.Google Scholar
Hier-Majumder, S. & Drombosky, T. W. 2016 Coupled flow and anisotropy in the ultralow velocity zones. Earth Planet. Sci. Lett. 450, 274282.Google Scholar
Hier-Majumder, S. & Revenaugh, J. 2010 Relationship between the viscosity and topography of the ultralow-velocity zone near the core–mantle boundary. Earth Planet. Sci. Lett. 299 (3–4), 382386.Google Scholar
Hier-Majumder, S., Ricard, Y. & Bercovici, D. 2006 Role of grain boundaries in magma migration and storage. Earth Planet. Sci. Lett. 248 (3–4), 735749.CrossRefGoogle Scholar
Hier-Majumder, S. & Tauzin, B. 2017 Pervasive upper mantle melting beneath the western US. Earth Planet. Sci. Lett. 463, 2535.CrossRefGoogle Scholar
Holyoke, C. W. & Tullis, J. 2006 Mechanisms of weak phase interconnection and the effects of phase strength contrast on fabric development. J. Struct. Geol. 28 (4), 621640.Google Scholar
Hopper, R. W. 1993a Coalescence of two viscous cylinders by capillarity. Part I. Theory. J. Amer. Ceramics Soc. 76, 29472952.Google Scholar
Hopper, R. W. 1993b Coalescence of two viscous cylinders by capillarity. Part II. Shape evolution. J. Amer. Ceramics Soc. 76, 29532960.Google Scholar
Katz, R. F., Knepley, M. G., Smith, B., Spiegelman, M. & Coon, E. T. 2007 Numerical simulation of geodynamic processes with the portable extensible toolkit for scientific computation. Phys. Earth Planet. Inter. 163, 5268.Google Scholar
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics: Principles and Selected Applications, chap. 13, Dover.Google Scholar
King, D. S. H., Hier-Majumder, S. & Kohlstedt, D. L. 2011 An experimental study of the effects of surface tension in homogenizing perturbations in melt fraction. Earth Planet. Sci. Lett. 307 (3–4), 735749.CrossRefGoogle Scholar
Kuiken, H. K. 1993 Viscous sintering: the surface-tension-driven flow of a liquid form under the influence of curvature gradient at its surface. J. Fluid Mech. 214, 503515.Google Scholar
Leal, G. 1992 Laminar Flow and Convective Transport Processes. Butterworth-Heinemann.Google Scholar
Li, X. & Pozrikidis, C. 1996 Shear flow over a liquid drop adhering to a solid surface. J. Fluid Mech. 307, 167190.Google Scholar
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.Google Scholar
Li, X., Zhou, H. & Pozrikidis, C. 1995 A numerical study of the shearing motion of emulsions and foams. J. Fluid Mech. 286, 379404.Google Scholar
Loewenberg, M. & Hinch, E. J. 1996 Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321 (1), 395419.Google Scholar
Manga, M., Castro, J., Cashman, K. V. & Loewenberg, M. 1998 Rheology of bubble-bearing magmas. J. Volcanol. Geotherm. Res. 87 (1–4), 1528.CrossRefGoogle Scholar
Manga, M. & Loewenberg, M. 2001 Viscosity of magmas containing highly deformable bubbles. J. Volcanol. Geotherm. Res. 105 (1–2), 1924.Google Scholar
Manga, M. & Stone, H. A. 1995 Low Reynolds number motion of bubbles, drops, and rigid spheres through fluid–fluid interfaces. J. Fluid Mech. 287, 279298.Google Scholar
McKenzie, D. 1984 The generation and compaction of partially molten rock. J. Petrol. 25, 713765.Google Scholar
McNamara, A. K., Garnero, E. J. & Rost, S. 2010 Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet. Sci. Lett. 299 (1–2), 19.Google Scholar
Pozrikidis, C. 1990 The deformation of a liquid drop moving normal to a plane wall. J. Fluid Mech. 215, 331363.Google Scholar
Pozrikidis, C. 2001 Interfacial dynamics for Stokes flow. J. Comput. Phys. 169, 250301.CrossRefGoogle Scholar
Qi, C., Zhao, Y. H. & Kohlstedt, D. L. 2013 An experimental study of pressure shadows in partially molten rocks. Earth Planet. Sci. Lett. 382, 7784.CrossRefGoogle Scholar
Rhebergen, S., Wells, G. N., Katz, R. F. & Wathen, A. J. 2014 Analysis of block preconditioners for models of coupled magma/mantle dynamics. SIAM J. Sci. Comput. 36 (4), A1960A1977.Google Scholar
Rhebergen, S., Wells, G. N., Wathen, A. J. & Katz, R. F. 2015 Three-field block preconditioners for models of coupled magma/mantle dynamics. SIAM J. Sci. Comput. 37 (5), A2270A2294.Google Scholar
Ricard, Y., Bercovici, D. & Schubert, G. 2001 A two-phase model for compaction and damage. Part 2. Applications to compaction, deformation, and the role of interfacial surface tension. J. Geophys. Res. B 106 (5), 89078924.Google Scholar
Rost, S., Garnero, E. J., Williams, Q. & Manga, M. 2005 Seismological constraints on a possible plume root at the core–mantle boundary. Nature 435, 666669.Google Scholar
Rost, S. & Revenaugh, J. 2003 Small scale ultralow-velocity zone structure imaged by ScP . J. Geophys. Res. 108, B12056.Google Scholar
Rudge, J. F. 2014 Analytical solutions of compacting flow past a sphere. J. Fluid Mech. 746, 466497.Google Scholar
Rudge, J. F., Bercovici, D. & Spiegelman, M. 2011 Disequilibrium melting of a two phase multicomponent mantle. Geophys. J. Intl 184, 699718.Google Scholar
Rust, A. C. & Manga, M. 2002 Effects of bubble deformation on the viscosity of dilute suspensions. J. Non-Newtonian Fluid Mech. 104 (1), 5363.CrossRefGoogle Scholar
Simpson, G., Spiegelman, M. & Weinstein, M. I. 2010a A multiscale model of partial melts. Part 1. Effective equations. J. Geophys. Res. 115, B04410.Google Scholar
Simpson, G., Spiegelman, M. & Weinstein, M. I. 2010b A multiscale model of partial melts. Part 2. Numerical results. J. Geophys. Res. 115, B04411.Google Scholar
Spiegelman, M. 1993a Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 1738.Google Scholar
Spiegelman, M. 1993b Flow in deformable porous media. Part 2. Numerical analysis: the relationship between shock waves and solitary waves. J. Fluid Mech. 247, 3963.Google Scholar
Sramek, O., Ricard, Y. & Bercovici, D. 2006 Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Intl 168, 964982.CrossRefGoogle Scholar
Takei, Y. & Hier-Majumder, S. 2009 A generalized formulation of interfacial tension driven fluid migration with dissolution/precipitation. Earth Planet. Sci. Lett. 288 (1–2), 138148.Google Scholar
Taylor, G. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138 (834), 4148.Google Scholar
Williams, Q. & Garnero, E. J. 1996 Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 15281530.Google Scholar
Wimert, J. T. & Hier-Majumder, S. 2012 A three-dimensional microgeodynamic model of melt geometry in the Earth’s deep interior. J. Geophys. Res. 117 (B04), B04203.Google Scholar