Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T15:18:21.022Z Has data issue: false hasContentIssue false

Analysis of a model for foam improved oil recovery

Published online by Cambridge University Press:  20 June 2014

P. Grassia*
Affiliation:
CEAS, The Mill, University of Manchester, Oxford Road, Manchester M13 9PL, UK
E. Mas-Hernández
Affiliation:
CEAS, The Mill, University of Manchester, Oxford Road, Manchester M13 9PL, UK
N. Shokri
Affiliation:
CEAS, The Mill, University of Manchester, Oxford Road, Manchester M13 9PL, UK
S. J. Cox
Affiliation:
DMaP, Aberystwyth University, Aberystwyth, Ceredigion SY23 3BZ, UK
G. Mishuris
Affiliation:
DMaP, Aberystwyth University, Aberystwyth, Ceredigion SY23 3BZ, UK
W. R. Rossen
Affiliation:
Department of Geotechnology, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
*
Email address for correspondence: [email protected]

Abstract

During improved oil recovery (IOR), gas may be introduced into a porous reservoir filled with surfactant solution in order to form foam. A model for the evolution of the resulting foam front known as ‘pressure-driven growth’ is analysed. An asymptotic solution of this model for long times is derived that shows that foam can propagate indefinitely into the reservoir without gravity override. Moreover, ‘pressure-driven growth’ is shown to correspond to a special case of the more general ‘viscous froth’ model. In particular, it is a singular limit of the viscous froth, corresponding to the elimination of a surface tension term, permitting sharp corners and kinks in the predicted shape of the front. Sharp corners tend to develop from concave regions of the front. The principal solution of interest has a convex front, however, so that although this solution itself has no sharp corners (except for some kinks that develop spuriously owing to errors in a numerical scheme), it is found nevertheless to exhibit milder singularities in front curvature, as the long-time asymptotic analytical solution makes clear. Numerical schemes for the evolving front shape which perform robustly (avoiding the development of spurious kinks) are also developed. Generalisations of this solution to geologically heterogeneous reservoirs should exhibit concavities and/or sharp corner singularities as an inherent part of their evolution: propagation of fronts containing such ‘inherent’ singularities can be readily incorporated into these numerical schemes.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afsharpoor, A., Lee, G. S. & Kam, S. I. 2010 Mechanistic simulation of continuous gas injection period during surfactant-alternating-gas (SAG) processes using foam catastrophe theory. Chem. Engng Sci. 65, 36153631.CrossRefGoogle Scholar
Arnold, V. I. 2004 Lectures on Partial Differential Equations, 2nd edn. Springer.CrossRefGoogle Scholar
Ashoori, E., van der Heijden, T. L. M. & Rossen, W. R. 2010 Fractional-flow theory of foam displacements with oil. SPE J. 15, 260273.CrossRefGoogle Scholar
Barry, J. D., Weaire, D. & Hutzler, S. 2010 Shear localisation with 2D viscous froth and its relation to the continuum model. Rheol. Acta 49, 687698.CrossRefGoogle Scholar
Bertin, H. J., Apaydin, O. G., Castanier, L. M. & Kovscek, A. R.1998 Foam flow in heterogeneous porous media: effect of crossflow (Paper SPE 39678). In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, 19–22 April.CrossRefGoogle Scholar
Bertin, H. J., Apaydin, O. G., Castanier, L. M. & Kovscek, A. R. 1999 Foam flow in heterogeneous porous media. J. Soc. Petroleum Engrs 4, 7582.Google Scholar
Blaker, T., Aarra, M. G., Skauge, A., Rasmussen, L., Celius, H. K., Martinsen, H. A. & Vassenden, F. 2002 Foam for gas mobility control in the Snorre field: the FAWAG project. SPE Res. Eval. Engng 5, 317323.CrossRefGoogle Scholar
Boeije, C. S. & Rossen, W. R. 2014 Gas injection rate needed for SAG foam processes to overcome gravity override. SPE J.; doi:10.2118/166244-PA.Google Scholar
Brakke, K. A. 1978 The Motion of a Surface by its Mean Curvature. Princeton University Press, available at http://www.susqu.edu/brakke.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.CrossRefGoogle Scholar
Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. & Saint-Jalmes, A. 2013 Foams: Structure and Dynamics. Oxford University Press.CrossRefGoogle Scholar
Cantat, I., Kern, N. & Delannay, R. 2004 Dissipation in foam flowing through narrow channels. Europhys. Lett. 65, 726732.CrossRefGoogle Scholar
Casademunt, J. & Magdaleno, F. X. 2000 Dynamics and selection of fingering patterns. Recent developments in the Saffman–Taylor problem. Phys. Rep. 337, 135.CrossRefGoogle Scholar
Cottin, C., Bodiguel, H. & Colin, A. 2010a Drainage in two-dimensional porous media: from capillary fingering to viscous flow. Phys. Rev. E 82, 046315.CrossRefGoogle ScholarPubMed
Cottin, C., Bodiguel, H. & Colin, A. 2010b Influence of wetting conditions on drainage in porous media: a microfluidic study. Phys. Rev. E 82, 026311.Google Scholar
Couder, Y., Cardoso, O., Dupuy, D., Tavernier, P. & Thom, W. 1986 Dendritic growth in the Saffman–Taylor experiment. Europhys. Lett. 2, 237443.CrossRefGoogle Scholar
Cox, S. J. 2005 A viscous froth model for dry foams in the Surface Evolver. Colloids Surf. A 263, 8189; a collection of papers presented at the 5th European Conference on Foams, Emulsions, and Applications, EUFOAM 2004, University of Marne-la-Vallee, Champs sur Marne (France), 5–8 July 2004.CrossRefGoogle Scholar
Cox, S. & Mishuris, G. 2009 Remarks on the accuracy of algorithms for motion by mean curvature in bounded domains. J. Mech. Mater. Struct. 4, 15551572.CrossRefGoogle Scholar
Cox, S. J., Neethling, S., Rossen, W. R., Schleifenbaum, W., Schmidt-Wellenburg, P. & Cilliers, J. J. 2004a A theory of the effective yield stress of foam in porous media: the motion of a soap film traversing a three-dimensional pore. Colloids Surf. A 245, 143151.CrossRefGoogle Scholar
Cox, S., Weaire, D. & Glazier, J. A. 2004b The rheology of two-dimensional foams. Rheol. Acta 43, 442448.CrossRefGoogle Scholar
Cox, S. J., Weaire, D. & Mishuris, G. 2009 The viscous froth model: steady states and the high-velocity limit. Proc. R. Soc. Lond. A 465, 23912405.Google Scholar
Drenckhan, W., Cox, S. J., Delaney, G., Holste, H., Weaire, D. & Kern, N. 2005 Rheology of ordered foams – on the way to discrete microfluidics. Colloids Surf. A 263, 5264.CrossRefGoogle Scholar
Embley, B. & Grassia, P. 2011 Viscous froth simulations with surfactant mass transfer and Marangoni effects: deviations from Plateau’s rules. Colloids Surf. A 382, 817.CrossRefGoogle Scholar
Falls, A. H., Hirasaki, G. J., Patzek, T. W., Gauglitz, D. A., Miller, D. D. & Ratulowski, T. 1988 Development of a mechanistic foam simulator: the population balance and generation by snap-off. SPE Res. Engng 3, 884892.CrossRefGoogle Scholar
Fisher, A. W., Foulser, R. W. S. & Goodyear, S. G.1990 Mathematical modeling of foam flooding (Paper SPE/DOE 20195). In SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, OK, 22–25 April.CrossRefGoogle Scholar
Fullman, R. L. 1952 Boundary migration during grain growth. In Metal Interfaces, pp. 179207. American Society for Metals.Google Scholar
Glazier, J. A. & Weaire, D. 1992 The kinetics of cellular patterns. J. Phys.: Condens. Matter 4, 18671894.Google Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley Publishing Company.Google Scholar
Grassia, P., Montes-Atenas, G., Lue, L. & Green, T. E. 2008a A foam film propagating in a confined geometry: analysis via the viscous froth model. Eur. Phys. J. E 25, 3949.CrossRefGoogle Scholar
Grassia, P., Usher, S. P. & Scales, P. J. 2008b A simplified parameter extraction technique using batch settling data to estimate suspension material properties in dewatering applications. Chem. Engng Sci. 63, 19711986.CrossRefGoogle Scholar
Grassia, P., Usher, S. P. & Scales, P. J. 2011 Closed-form solutions for batch settling height from model settling flux functions. Chem. Engng Sci. 66, 964972.CrossRefGoogle Scholar
Green, T. E., Bramley, A., Lue, L. & Grassia, P. 2006 Viscous froth lens. Phys. Rev. E 74, 051403.CrossRefGoogle ScholarPubMed
Green, T. E., Grassia, P., Lue, L. & Embley, B. 2009 Viscous froth model for a bubble staircase structure under rapid applied shear: an analysis of fast flowing foam. Colloids Surf. A 348, 4958.CrossRefGoogle Scholar
Green, D. W. & Willhite, G. P. 1998 Enhanced Oil Recovery. Society of Petroleum Engineers.Google Scholar
Haranczyk, M. & Sethian, J. A. 2009 Navigating molecular worms inside chemical labyrinths. Proc. Natl Acad. Sci. USA 106, 2147221477.CrossRefGoogle ScholarPubMed
Haranczyk, M. & Sethian, J. A. 2010 Automatic structure analysis in high-throughput characterization of porous materials. J. Chem. Theory Comput. 6, 34723480.CrossRefGoogle ScholarPubMed
Hirasaki, G. J., Miller, C. A. & Puerto, M. 2011 Recent advances in surfactant EOR. SPE J. 16, 889907.CrossRefGoogle Scholar
Hoefner, M. L. & Evans, E. M. 1995 ${\mathrm{CO}}_{2}$ foam: results from four developmental fields trials. SPE Res. Eval. Engng 10, 273281.CrossRefGoogle Scholar
Huh, C. & Reed, R. L. 1983 A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid Interface Sci. 91, 472484.CrossRefGoogle Scholar
Jones, S. A., Dollet, B., Méheust, Y., Cox, S. J. & Cantat, I. 2013 Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels. Phys. Fluids 25, 063101.CrossRefGoogle Scholar
Kam, S. I. 2008 Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A 318, 6277.CrossRefGoogle Scholar
Kern, N. & Weaire, D. 2003 Approaching the dry limit in foam. Phil. Mag. 83, 29732987.CrossRefGoogle Scholar
Kern, N., Weaire, D., Martin, A., Hutzler, S. & Cox, S. J. 2004 Two-dimensional viscous froth model for foam dynamics. Phys. Rev. E 70, 041411.CrossRefGoogle ScholarPubMed
Kessler, D. A. & Levine, H. 1986a Theory of the Saffman–Taylor finger pattern I. Phys. Rev. A 33, 26212633.CrossRefGoogle ScholarPubMed
Kessler, D. A. & Levine, H. 1986b Theory of the Saffman–Taylor finger pattern II. Phys. Rev. A 33, 26342639.CrossRefGoogle ScholarPubMed
Khatib, Z. I., Hirasaki, G. J. & Falls, A. H. 1988 Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE Res. Engng 3, 919926.CrossRefGoogle Scholar
Knight, R. D. 2008 Wave optics. In Physics for Scientists and Engineers with Modern Physics: A Strategic Approach, 2nd edn. Pearson Addison-Wesley.Google Scholar
Kovscek, A. R. & Bertin, H. J. 2003a Foam mobility in heterogeneous porous media. I. Scaling concepts. Trans. Porous Med. 52, 1735.CrossRefGoogle Scholar
Kovscek, A. R. & Bertin, H. J. 2003b Foam mobility in heterogeneous porous media. II. Experimental observations. Trans. Porous Med. 52, 3749.CrossRefGoogle Scholar
Kovscek, A. R., Patzek, T. W. & Radke, C. J. 1995 A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone. Chem. Engng Sci. 50, 37833799.CrossRefGoogle Scholar
Kovscek, A. R. & Radke, C. J. 1994 Fundamentals of foam transport in porous media. In Foams: Fundamentals and Applications in the Petroleum Industry (ed. Schramm, L. L.), Advances in Chemistry, vol. 242, pp. 115163. American Chemical Society, chapter 3.CrossRefGoogle Scholar
Kraynik, A. M. 1988 Foam flows. Annu. Rev. Fluid Mech. 20, 325357.CrossRefGoogle Scholar
Kynch, G. J. 1952 A theory of sedimentation. Trans. Faraday Soc. 48, 166176.CrossRefGoogle Scholar
Lake, L. W. 2010 Enhanced Oil Recovery. Prentice Hall.Google Scholar
Lester, D. R., Usher, S. P. & Scales, P. J. 2005 Estimation of the hindered settling function $R(\phi )$ from batch-settling tests. AIChE J. 51, 11581168.CrossRefGoogle Scholar
Li, R. F., Yan, W., Liu, S. H., Hirasaki, G. J. & Miller, C. A. 2010 Foam mobility control for surfactant enhanced oil recovery. SPE J. 15, 934948.CrossRefGoogle Scholar
Lighthill, M. J. & Whitham, G. B. 1955 On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A 229, 317345.Google Scholar
Loglio, G., Pandolfini, P., Makievski, A. V. & Miller, R. 2003 Calibration parameters of the pendant drop tensiometer: assessment of accuracy. J. Colloid Interface Sci. 265, 161165.CrossRefGoogle ScholarPubMed
Ma, K., Liontas, R., Conn, C., Hirasaki, G. J. & Biswal, S. L. 2012 Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matt. 8, 1066910675.CrossRefGoogle Scholar
Ma, K., Lopez-Salinas, J. L., Puerto, M. C., Miller, C. A., Biswal, S. L. & Hirasaki, G. J. 2013 Estimation of parameters for the simulation of foam flow through porous media. Part 1: the dry-out effect. Energy Fuels 27, 23632375.CrossRefGoogle Scholar
Markstein, G. H. 1951 Experimental and theoretical studies of flame-front stability. J. Aeronaut. Sci. 18, 199209.CrossRefGoogle Scholar
Martinsen, H. A. & Vassenden, F.1999 Foam-assisted water alternating gas (FAWAG) process at Snorre. In European IOR Symposium, Brighton, UK, 18–20 August.Google Scholar
Moore, M. G., Juel, A., Burgess, J. M., McCormick, W. D. & Swinney, H. L. 2002 Fluctuations in viscous fingering. Phys. Rev. E 65, 030601.CrossRefGoogle ScholarPubMed
Mullins, W. W. 1956 Two-dimensional growth of idealized grain boundaries. J. Appl. Phys. 27, 900904.CrossRefGoogle Scholar
Peleg, A., Meerson, B., Vilenkin, A. & Conti, M. 2001 Area-preserving dynamics of a long slender finger by curvature: a test case for globally conserved phase ordering. Phys. Rev. E 63, 066101.CrossRefGoogle ScholarPubMed
Persoff, P., Radke, C. J., Pruess, K. & Benson, S. M. 1991 A laboratory investigation of foam flow in sandstone at elevated pressure. SPE Res. Engng 6, 365372.CrossRefGoogle Scholar
Pitts, E. 1980 Penetration of fluid into a Hele-Shaw cell: Saffman–Taylor experiment. J. Fluid Mech. 97, 5364.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Partial differential equations. In Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press.Google Scholar
Renardy, M. & Rogers, R. C. 2004 An Introduction to Partial Differential Equations, 2nd edn. Texts in Applied Mathematics, vol. 13. Springer-Verlag.Google Scholar
Robertson, W. M. & Lehman, G. W. 1968 The shape of a sessile drop. J. Appl. Phys. 39, 19941996.CrossRefGoogle Scholar
Rossen, W. R. 1990a Theory of mobilization pressure gradient of flowing foams in porous media: I. Incompressible foam. J. Colloid Interface Sci. 136, 116.CrossRefGoogle Scholar
Rossen, W. R. 1990b Theory of mobilization pressure gradient of flowing foams in porous media: III. Asymmetric lamella shapes. J. Colloid Interface Sci. 136, 3853.CrossRefGoogle Scholar
Rossen, W. R. 1996 Foams in enhanced oil recovery. In Foams: Theory, Measurements and Applications (ed. Prud’homme, R. K. & Khan, S. A.), Surfactant Science Series, pp. 99187. Marcel Dekker, chapter 2.Google Scholar
Rossen, W. R.2013 Numerical challenges in foam simulation: a review (Paper SPE 166232). In SPE Annual Technical Conference and Exhibition, New Orleans, LA, 30 September–2 October.CrossRefGoogle Scholar
Rossen, W. R. & Bruining, J. 2007 Foam displacements with multiple steady states. SPE J. 12, 518.CrossRefGoogle Scholar
Rossen, W. R., van Duijn, C. J., Nguyen, Q. P., Shen, C. & Vikingstad, A. K. 2010 Injection strategies to overcome gravity segregation in simultaneous gas and water injection into homogeneous reservoirs. SPE J. 15, 7690.CrossRefGoogle Scholar
Rossen, W. R., Zellinger, S. C., Shi, J.-X. & Lim, M. T. 1999 Simplified mechanistic simulation of foam processes in porous media. SPE J. 4, 279287.CrossRefGoogle Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Sahimi, M. 2011 Flow and Transport in Porous Media and Fractured Rock: from Classical Methods to Modern Approaches, 2nd edn. Wiley-VCH Publishers.CrossRefGoogle Scholar
Satomi, R., Grassia, P., Cox, S., Mishuris, G. & Lue, L. 2013 Modelling a sheared semi-infinite film. Proc. R. Soc. Lond. A 469, 20130359.Google Scholar
Saye, R. I. & Sethian, J. A. 2011 The Voronoi implicit interface method for computing multiphase physics. Proc. Natl Acad. Sci. USA 108, 1949819503.CrossRefGoogle ScholarPubMed
Schramm, L. L. & Wassmuth, F. 1994 Foams: basic principles. In Foams: Fundamentals and Applications in the Petroleum Industry (ed. Schramm, L. L.), Advances in Chemistry, vol. 242, pp. 345. American Chemical Society, chapter 1.CrossRefGoogle Scholar
Sethian, J. A. 1996 A fast marching level set method for monotonically advancing fronts. Proc. Natl Acad. Sci. USA 93, 15911595.CrossRefGoogle ScholarPubMed
Sethian, J. A. 1999a Fast marching methods. SIAM Rev. 41, 199235.CrossRefGoogle Scholar
Sethian, J. A. 1999b Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge University Press.Google Scholar
Sethian, J. A. & Popovici, A. M. 1999 3D traveltime computation using the fast marching method. Geophysics 64, 516523.CrossRefGoogle Scholar
Sethian, J. A. & Vladimirsky, A. 2000 Fast methods for the eikonal and related Hamilton–Jacobi equations on unstructured meshes. Proc. Natl Acad. Sci. USA 97, 56995703.CrossRefGoogle ScholarPubMed
Shan, D. & Rossen, W. R. 2004 Optimal injection strategies for foam IOR. SPE J. 9, 132150.CrossRefGoogle Scholar
Smith, C. S. 1952 Grain shapes and other metallurgical applications of topology. In Metal Interfaces, pp. 65108. American Society for Metals.Google Scholar
Tabeling, P., Zocchi, G. & Libchaber, A. 1987 An experimental study of the Saffman–Taylor instability. J. Fluid Mech. 177, 6782.CrossRefGoogle Scholar
Taylor, J. E. 1995 The motion of multiple-phase junctions under prescribed phase-boundary velocities. J. Differ. Equ. 119, 109136.CrossRefGoogle Scholar
Thome, H., Rabaud, M., Hakim, V. & Couder, Y. 1989 The Saffman–Taylor instability: from the linear to the circular geometry. Phys. Fluids A 1, 224240.CrossRefGoogle Scholar
de Velde Harsenhorst, R. M., Dharma, A. S., Andrianov, A. & Rossen, W. R. 2014 Extension and verification of a simple model for vertical sweep in foam SAG displacements. SPE Res. Eval. Engng; doi:10.2118/164891-PA.CrossRefGoogle Scholar
Weaire, D. & Hutzler, S. 1999 The Physics of Foams. Clarendon Press.Google Scholar
Weaire, D. & Kermode, J. P. 1983 Computer simulation of a 2-D soap froth. I. Method and motivation. Phil. Mag. B 48, 245259.CrossRefGoogle Scholar
Weaire, D. & Kermode, J. P. 1984 Computer simulation of a 2-D soap froth. II. Analysis of results. Phil. Mag. B 50, 379395.CrossRefGoogle Scholar
Weaire, D. & McMurry, S. 1996 Some fundamentals of grain growth. Solid State Phys. 50, 136.CrossRefGoogle Scholar
Xu, Q. & Rossen, W. R. 2003 Effective viscosity of foam in periodically constricted tubes. Colloids Surf. A 216, 175194.CrossRefGoogle Scholar
Xu, Q. & Rossen, W. R. 2004 Experimental study of gas injection in a surfactant-alternating-gas foam process. SPE Res. Eval. Engng 7, 438448.CrossRefGoogle Scholar
Yan, W., Miller, C. A. & Hirasaki, G. J. 2006 Foam sweep in fractures for enhanced oil recovery. Colloids Surf. A 282, 348359.CrossRefGoogle Scholar
Zanganeh, M. N., Kam, S. I., LaForce, T. C. & Rossen, W. R. 2011 The method of characteristics applied to oil displacement by foam. SPE J. 16, 823.CrossRefGoogle Scholar
Zanganeh, M. N. & Rossen, W. R. 2013 Optimization of foam enhanced oil recovery: balancing sweep and injectivity. SPE Res. Eval. Engng 16, 5159.CrossRefGoogle Scholar
Zhou, Z. H. & Rossen, W. R. 1995 Applying fractional-flow theory to foam processes at the ‘limiting capillary pressure’. SPE Adv. Technol. Ser. 3, 154162.CrossRefGoogle Scholar